
Automated Driving Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Automated Driving Toolbox™ Release Notes
© COPYRIGHT 2017–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2023a

Ground Truth Labeling . 1-2

Labeler Enhancements: Point ROI label definition support 1-2

Cuboid Scenario Simulation . 1-3

Sensors in Driving Scenario: Add sensors to driving scenario and get target
poses with respect to host actors using MATLAB functions 1-3

Driving Scenario to RoadRunner: Export RoadRunner HD Map from driving
scenario for Euro NCAP-like scenes . 1-3

ASAM OpenDRIVE Import Enhancements: Import geographic reference of
road network data . 1-3

Unreal Engine Scenario Simulation . 1-4

Simulation 3D Environment Upgrade: Run 3D simulations using Unreal
Engine 4.27 . 1-4

Simulation 3D Ultrasonic Array Block: Generate synthetic range
measurements in Unreal Engine scenarios with tunable acoustic
parameters . 1-4

Custom Top-Down Visualization Example: Create a custom top-down view of
an Unreal Engine scene in Simulink . 1-4

RoadRunner Scenario Simulation . 1-5

Sensor Simulation for RoadRunner Scenario: Simulate RoadRunner
Scenario with sensor models defined in MATLAB 1-5

Sensor Simulation for RoadRunner Scenario: Simulate RoadRunner
Scenario with sensor models defined in Simulink 1-5

Offline Playback of RoadRunner Scenario Simulation: Replay simulation
from saved file . 1-5

User-Defined Events: Use custom events to control a RoadRunner Scenario
simulation or enable communication between actors 1-5

Access lane location of all actors in a RoadRunner Scenario simulation using
MATLAB or Simulink . 1-6

Coordinate Reference Systems: Read RoadRunner HD map using readCRS
function . 1-6

Functionality being removed or changed . 1-6

Scenario Generation and Variation . 1-8

Scenario Builder Enhancements and Examples: Track lane boundaries,
store lane data, store actor track list data, other feature improvements,
and new examples . 1-8

iii

Contents

Variant Generator Enhancements and Examples: Obtain collision
information feature, and new example . 1-9

Detection and Tracking . 1-10

YOLO v3 Object Detection: Detect objects in monocular camera images
using you only look once version 3 (YOLO v3) deep learning network
. 1-10

Localization and Mapping . 1-11

HERE HD Live Map Data: Set default basemap for visualizations of HERE
HD Live Map layer data . 1-11

Planning and Control . 1-12

Path Planning Using Lidar Map: Plan reference path for autonomous vehicle
navigation . 1-12

Lane-Level Path Planning: Design lane-level path planner in MATLAB and
simulate with RoadRunner Scenario . 1-12

Applications . 1-13

Truck Platooning Application: Cosimulate platooning application with
RoadRunner Scenario and Simulink . 1-13

Autonomous Emergency Braking: Design and simulate autonomous
emergency braking (AEB) system with high-fidelity vehicle dynamics
. 1-13

Highway Lane Following Example Enhancements: Compute performance
metrics for different components of lane-following system 1-13

R2022b

Ground Truth Labeling . 2-2

Labeler Enhancements: 3D line ROI labels for point clouds 2-2
Functionality being removed or changed . 2-3

File I/O . 2-4

ADTF File Reader Enhancements: Read new stream types, sample and
chunk timestamps for streams . 2-4

Cuboid Scenario Simulation . 2-5

Ultrasonic Detection Generator Block: Generate synthetic range
measurements in driving scenarios in Simulink 2-5

Bird's-Eye Scope Enhancements: Visualize ultrasonic sensor detections
. 2-5

ASAM OpenDRIVE Import Enhancements: Import multiple lane
specifications and road heading angle information 2-5

iv Contents

ASAM OpenDRIVE Export Enhancements: Export multiple lane
specifications for a road with single-lane road segment 2-5

Unreal Engine Scenario Simulation . 2-6

Simulation 3D Ultrasonic Sensor Block: Generate synthetic range
measurements in Unreal Engine scenarios . 2-6

Simulation 3D Pedestrian Block: Model a pedestrian in Unreal Engine
scenarios . 2-6

Simulation 3D Bicyclist Block: Model a bicyclist in Unreal Engine scenarios
. 2-6

Simulation 3D Scene Configuration: Use new MATLAB API to download
maps locally from the server . 2-6

Simulation 3D Scene Configuration Block: Specify ASAM OpenDRIVE file
for lane detections . 2-6

Functionality being removed or changed . 2-7

RoadRunner Scenario Simulation . 2-8

High-Definition Maps: Import map data into RoadRunner using MATLAB
functions . 2-8

getAction Function Enhancements: Retrieve longitudinal distance action of
actor . 2-8

getAttribute Function Enhancements: Retrieve child or parent actors from
actor group . 2-8

RoadRunner Scenario Writer Block: Update all child actors of actor group in
RoadRunner Scenario from Simulink . 2-8

User-Defined Actions: Read and process user-defined actions from
RoadRunner Scenario using MATLAB functions 2-9

User-Defined Actions: Read and process user-defined actions from
RoadRunner Scenario using Simulink behavior model 2-9

Timeout value: Set timeout value for connection between MATLAB and
RoadRunner Scenario . 2-10

Application Examples: Simulate autonomous emergency braking and
highway lane following applications with RoadRunner Scenario 2-10

Scenario Generation and Variation . 2-11

Scenario Builder: Scenario Builder for Automated Driving Toolbox support
package . 2-11

Variant Generator: Scenario Variant Generator for Automated Driving
Toolbox support package . 2-12

Detection and Tracking . 2-13

Monocamera Parameter Estimation: Estimate monocular camera
parameters using the road image and scene geometry 2-13

3D Cuboid Computation: Compute 3D cuboids from 2D projected cuboids
and camera parameters . 2-13

Multi-Object Tracker Enhancements: Confirm tracks directly, and obtain
position, velocity, and covariance from tracks using motion model name
input . 2-13

Obtain position, velocity, and covariance from tracks using motion model
name input . 2-13

Applications . 2-15

v

Truck Platooning Example: Design and simulate platooning application
using V2V communication . 2-15

PIL Testing Example: Automate processor-in-the-loop testing of forward
vehicle sensor fusion algorithm . 2-15

Scenario Variants of AEB System Example: Automate testing of AEB system
using variants of Euro NCAP test scenario . 2-15

R2022a

Ground Truth Labeling . 3-2

Labeler Enhancements: 3D line ROI labels for point clouds 3-2

File I/O . 3-3

ADTF File Reader: Read data from Automotive Data and Time-Triggered
Framework (ADTF) DAT file . 3-3

Cuboid Scenario Simulation . 3-4

Ultrasonic Sensor Model: Generate synthetic range measurements from
programmatic driving scenarios and Driving Scenario Designer app . . . 3-4

Bird's-Eye Scope Enhancement: Run simulations from previously saved
models without finding signals again . 3-4

Radar Sensor Performance Enhancement: Simulate driving scenarios with
radar sensors faster in MATLAB and Simulink 3-4

ASAM OpenSCENARIO Export Enhancements: Export road networks,
actors, and trajectories to ASAM OpenSCENARIO file version 1.1 3-4

Sharp Curvature Roads: Create or import roads with sharp curvature 3-5
Road Group Enhancements: Import heading angle information of road

groups into the Driving Scenario Designer app 3-5
Ego Localization Example: Correct ego vehicle localization using recorded

sensor data . 3-6

Unreal Engine Scenario Simulation . 3-7

Simulation 3D Lidar Reflectivity: Model surface reflections in Unreal Engine
environment . 3-7

OpenCV Radial Distortion in Simulation 3D Camera Block: Simulate
cameras with OpenCV supported radial distortion model in Unreal
Engine Environment . 3-7

Simulation 3D Camera Performance Improvements: Run cameras at
improved speeds during Unreal Engine simulation 3-7

Simulation 3D Environment Upgrade: Run 3D simulations using Unreal
Engine 4.26 . 3-7

Functionality being removed or changed . 3-8

RoadRunner Scenario Simulation . 3-9

Simulate RoadRunner scenarios with MATLAB and Simulink 3-9
MATLAB Functions for RoadRunner Scenes and Scenarios: Import and

export RoadRunner scenes and scenarios programmatically 3-10

vi Contents

Detection and Tracking . 3-11

YOLO v4 Object Detection: Detect objects in monocular camera images
using you only look once version 4 (YOLO v4) deep learning network
. 3-11

Bird's-Eye View Example Update: Generate code for algorithm to create
360° bird's-eye-view image around a vehicle . 3-11

PIL Verification of JPDA Tracker Example: Generate embedded code and
perform processor-in-loop (PIL) verification of JPDA tracker in highway
scenarios . 3-11

Functionality being removed or changed . 3-11

Localization and Mapping . 3-13

Parking Spot Detection Example: Detect empty parking spots in a parking
lot using semantic segmentation . 3-13

LOAM Example: Build map and localize using Lidar Odometry and Mapping
(LOAM) . 3-13

Point Cloud Localization Example Update: Localize with a prebuilt map
using NDT algorithm . 3-13

Visual SLAM Example Update: Reconstruct a parking lot from stereo
images using visual SLAM . 3-13

Applications . 3-14

Intersection Navigation Examples: Use V2V and V2X communication
technologies to build applications for safe navigation through
intersections . 3-14

Autonomous Emergency Braking Examples: Integrate high fidelity vehicle
dynamics model with autonomous emergency braking (AEB) system and
automate testing of AEB system . 3-14

Real-Time Testing Example: Deploy and test forward vehicle sensor fusion
component in real-time . 3-14

Highway Lane Change Example Update: Integrate surround vehicle sensor
fusion with highway lane change system . 3-14

R2021b

Ground Truth Labeling . 4-2

Labeler Enhancements: Edit cuboid ROI labels more easily in top, side, and
front 2-D view projections, segment ground from lidar data using SMRF
algorithm . 4-2

Velodyne Lidar Sources: Load data from Velodyne VLS-128 lidar device into
Ground Truth Labeler app . 4-2

Cuboid Scenario Simulation . 4-4

Parking Lots: Add parking lots to driving scenarios programmatically 4-4
ASAM OpenDRIVE Import Enhancements: Import a road network using

OpenDRIVE file version V1.5 and ASAM OpenDRIVE V1.6 4-5

vii

ASAM OpenDRIVE Export Enhancements: Export a road network to
OpenDRIVE file version V1.5 and ASAM OpenDRIVE V1.6 4-5

ASAM OpenSCENARIO Export Enhancements: Export the routes of actors
using instances of Trajectory element . 4-6

Scenario Reader Block: Obtain position, velocity, orientation, and
acceleration information from Ego Vehicle State port 4-6

INS Block: Generate synthetic readings from an inertial navigation and GPS
sensor in driving scenarios in Simulink . 4-6

Road Heading Angles: Create more precise roads using fewer road centers
. 4-6

Lane Generation Example: Add lane information to map imported road
network . 4-7

Scenario Generation Examples: Generate scenario from recorded sensor
data and scenario variants from seed scenario 4-8

Unreal Engine Scenario Simulation . 4-9

Unreal Engine Environment Upgrade: Run 3D simulations using Unreal
Engine, Version 4.25 . 4-9

Position Adjustments of Unreal Engine Cameras: Update relative translation
and rotation of camera sensors during simulation 4-9

Unreal Engine Environment Performance Improvements: Run 3D
simulations faster than real-time . 4-9

Unreal Engine Visualization Example: Visualize logged data for post-
simulation analysis . 4-10

Detection and Tracking . 4-11

Perturbations: Perturb object properties using truncated normal distribution
. 4-11

Code Generation: Generate more memory-efficient C/C++ code from
trackers and tracking filters . 4-11

Radar and Tracking Examples: Fuse radar and camera tracks, track using
event-based sensor fusion and retrodiction and track in scenarios with
multipath radar reflections in Simulink . 4-11

Track moving vehicles with multiple lidar sensors using a grid-based
tracker in Simulink . 4-11

Perform dynamic replanning on highways using tracking in MATLAB . . . 4-12

Localization and Mapping . 4-13

Visual Localization Example: Develop and evaluate a visual localization
algorithm in a parking lot scenario . 4-13

Segment Matching Example: Build Map and Localize Using Segment
Matching . 4-13

Applications . 4-14

Message-Based Communication: Establish message-based communication
between model components . 4-14

Real-Time Testing: Deploy and test highway lane following controller in real-
time . 4-14

Automate Testing: Automate testing of components of lane following and
lane changing systems . 4-14

viii Contents

R2021a

Ground Truth Labeling . 5-2

Labeler Enhancements: Label object instances for semantic segmentation,
automate labeling of multiple signals simultaneously, and additional
features . 5-2

File I/O . 5-3

Ibeo File Reader: Read sensor data from Ibeo data container (IDC) files
. 5-3

Cuboid Scenario Simulation . 5-4

ASAM OpenSCENARIO Export: Share a driving scenario using the ASAM
OpenSCENARIO 1.0 format . 5-4

Driving Scenario Import: Create driving scenarios with road data imported
from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service 5-4

INS Sensor Model: Generate synthetic readings from an inertial navigation
and GPS sensor in driving scenarios . 5-5

Barriers: Add guardrails and Jersey barriers to driving scenarios 5-5
Radar Data Generator: Generate synthetic sensor detections and tracks

from a driving scenario . 5-6
Driving Scenario Enhancements: Select multiple actors, align and distribute

actors, and additional features . 5-7
HERE HD Live Map Scenario Enhancements: Generate road networks with

junctions and specifications for multiple lanes along a single road 5-9
Multiple Lane Specifications: Add or drop lanes along a road 5-10
Road Groups: Define road intersections . 5-11
OpenDRIVE Export Enhancements: Export actors to OpenDRIVE format

. 5-12
Functionality being removed or changed . 5-12

Unreal Engine Scenario Simulation . 5-15

Unreal Engine Vehicle Enhancements: Import custom meshes and control
vehicle lights . 5-15

Unreal Engine Scene Environment: Control weather and sun position . . . 5-15

Detection and Tracking . 5-16

Out-of-Sequence Measurements Handling: Ignore out-of-sequence
measurements of object tracks, or terminate tracking when one is
encountered . 5-16

Bird's-Eye View Example: Create a 360° bird's-eye-view image around a
vehicle . 5-16

Radar and Tracking Examples: Process radar multipath detections, simulate
radar ghosts from multipath detections, and fuse lidar and radar tracks in
Simulink . 5-16

Localization and Mapping . 5-17

ix

Localization and Mapping Examples: Build an occupancy map from lidar
data using SLAM, develop a stereo visual SLAM algorithm, and perform
localization using HD map traffic data . 5-17

Functionality being removed or changed . 5-17

Planning and Control . 5-18

Motion Planning Example: Plan a path through an urban environment using
a dynamic occupancy grid map . 5-18

Applications . 5-19

Automated Driving Reference Applications: Examples on vehicle sensor
fusion, and code generation of vehicle detector, lane following controller,
and lane change planner . 5-19

R2020b

Ground Truth Labeling . 6-2

Labeler Enhancements: Label objects in images and video using projected
3-D bounding boxes, load custom image formats, use additional keyboard
shortcuts, and more . 6-2

Cuboid Scenario Simulation . 6-4

Reverse Motion in Driving Scenarios: Simulate driving maneuvers such as
backing into parking spots . 6-4

OpenStreetMap Roads: Create driving scenarios using road data imported
from the OpenStreetMap web service . 6-4

OpenDRIVE Export: Share a driving scenario using the OpenDRIVE format
. 6-5

Lidar Sensor Model Extensions: Generate synthetic point clouds from
scenarios in Driving Scenario Designer app and in Simulink 6-6

Driving Scenario Enhancements: Rotate actors interactively, specify yaw
angles with trajectories, and additional features 6-7

Scenario Generation Example: Automate scenario generation for driving
applications . 6-10

Driving Scenario Performance: Improved performance when simulating
scenarios with large numbers of actors . 6-11

Unreal Engine Scenario Simulation . 6-12

Simulation 3D Vision Detection Generator Block: Generate synthetic object
and lane boundary detections from the Unreal Engine simulation
environment . 6-12

Unreal Engine Camera Views: Visualize vehicle acceleration, pitch, and roll
with improved camera controls and other usability improvements . . . 6-12

Detection and Tracking . 6-16

x Contents

Tracking Examples: Perform grid-based tracking, track multiple lane
boundaries, and generate code for track-level fusion 6-16

Functionality being removed or changed . 6-16

Localization and Mapping . 6-17

Localization Examples: Develop lidar and visual SLAM algorithms for
navigation using the Unreal Engine simulation environment 6-17

HERE HD Live Map Marketplace Support: Read and visualize high-
definition map data from the HERE HD Live Map Marketplace service
. 6-17

HERE HD Live Map Localization Layers: Read localization data such as
barriers, signs, and poles from a road network 6-17

Functionality being removed or changed . 6-17

Planning and Control . 6-19

Trajectory Planning Example: Plan a vehicle trajectory through highway
traffic . 6-19

Functionality being removed or changed . 6-19

Applications . 6-20

Automated Driving Reference Applications: Lane following with intelligent
vehicles, lane following with RoadRunner scenes, traffic light negotiation
with Unreal Engine, and code generation for lane marker detection . . 6-20

R2020a

Ground Truth Labeling . 7-2

Multisignal Ground Truth Labeling: Label multiple lidar and video signals
simultaneously . 7-2

Lidar Labeling: Label lidar point clouds to train deep learning models . . . 7-3
Ground Truth Labeler Enhancements: Rename scene labels, select ROI

color, and configure ROI label name display . 7-4

Cuboid Scenario Simulation . 7-5

Lidar Sensor Model: Generate synthetic point clouds from programmatic
driving scenarios . 7-5

Bird's-Eye Scope Enhancements: Visualize radar and lidar data from 3D
simulation sensors, and visualize actors from custom blocks 7-5

HERE HD Live Map Roads in Scenarios: Create driving scenarios using
imported road data from high-definition geographic maps 7-6

Scenario Coordinate Transformation Blocks: Convert between vehicle and
world coordinates in driving scenarios, and convert between cuboid and
3D simulation coordinates . 7-7

Programmatic Sensor Import: Read programmatically created radar and
vision sensors into the Driving Scenario Designer app 7-8

Custom Actor Colors: Specify the colors of actors in a driving scenario . . . 7-9

xi

Ego Vehicle Ground Following: Orient the ego vehicle to follow the road
surface elevation in closed-loop simulations . 7-9

Rear-Facing Lane Detections: Detect lane boundaries from rear-facing
cameras in driving scenarios . 7-9

Road Interactions in Scenarios: Control the ability to modify roads in
driving scenarios . 7-9

Cuboid Versions of 3D Simulation Scenes: Build scenarios in the Driving
Scenario Designer app for use in a 3D simulation environment 7-10

laneMarking Function Enhancements: Define lane marking with multiple
marker styles . 7-10

trajectory Function Enhancements: Pause actors at a waypoint 7-11
Driving Scenario Designer App Enhancements: Add composite lane

markings and wait times . 7-12
Driving Scenarios: Improved performance when creating road networks and

actor trajectories . 7-12

Unreal Engine Scenario Simulation . 7-13

3D Scene Customization: Simulate driving scenarios in a 3D environment
using scenes created in the Unreal Editor . 7-13

3D Display for Cuboid Simulations: Visualize scenarios in a 3D environment
from the Driving Scenario Designer app . 7-13

Headless Mode: Run 3D simulations more quickly by not opening the Unreal
Engine visualization window . 7-14

3D Simulation Version Upgrade: Run 3D simulations using Unreal Engine,
Version 4.23 . 7-14

Box Truck Vehicle Type: Simulate vehicles with the dimensions of a box
truck in the 3D simulation environment . 7-14

Functionality being removed or changed . 7-14

Detection and Tracking . 7-15

YOLO v2 Vehicle Detection: Detect vehicles using a vehicle detector
pretrained by a you-only-look-once (YOLO) v2 network 7-15

SSD Object Detection: Detect objects in monocular camera images using
the single shot multibox detector (SSD) algorithm 7-15

Multiple-Object Tracking Enhancements: Initialize, confirm, and delete
tracks, and predict track states at specified times 7-15

Track History Logic: Confirm and delete tracks based on recent track
history . 7-16

Alpha-Beta Estimation Filter: Track objects using a linear motion and
measurement models . 7-16

Code Generation: Generate C/C++ code using MATLAB Coder 7-16
Tracking Examples: Fuse radar and lidar tracks, perform track-to-track

fusion in Simulink, and track vehicles using lidar in Simulink 7-16
Functionality being removed or changed . 7-16

Localization and Mapping . 7-18

Geographic Coordinate Transformations: Convert between geographic and
local coordinates . 7-18

Multiroute Geographic Map Display: Simultaneously stream geographic
coordinates from multiple driving routes . 7-18

Lidar SLAM Examples: Build a map from lidar data using a simultaneous
localization and mapping algorithm . 7-18

xii Contents

Planning and Control . 7-19

Quaternions: Represent orientation and rotations efficiently for localization
. 7-19

Applications . 7-20

Automated Driving Reference Applications: Simulate highway lane
following, highway lane change, and traffic light negotiation systems
. 7-20

R2019b

Ground Truth Labeling . 8-2

Ground Truth Labeling Enhancements: Copy and paste pixel labels,
improved pan and zoom, and improved frame navigation 8-2

Lane Boundary Detection Algorithm: Automate the labeling of lane
boundaries using the Ground Truth Labeler . 8-2

Cuboid Scenario Simulation . 8-3

drivingScenario Import: Read programmatically created driving scenarios
into the Driving Scenario Designer app and Simulink 8-3

Driving Scenario Designer Export to Simulink: Generate Simulink models of
driving scenarios and sensors . 8-3

drivingScenario Enhancements: Create roads with driving, parking, border,
shoulder, and restricted lanes . 8-3

roadNetwork Enhancements: Import additional lane types of OpenDRIVE
roads into a driving scenario . 8-3

Bird's-Eye Scope World Coordinates View: Visualize scenarios in world
coordinates . 8-3

Unreal Engine Scenario Simulation . 8-4

3D Simulation: Develop, test, and verify driving algorithms in a 3D
simulation environment rendered using the Unreal Engine from Epic
Games . 8-4

Detection and Tracking . 8-7

Track-to-Track Fusion Example: Fuse tracks from multiple vehicles to
increase automotive safety (requires Sensor Fusion and Tracking
Toolbox) . 8-7

YOLO v2 Acceleration: Acceleration support for YOLO v2 object detection
. 8-7

Code Generation: Generate C/C++ code using MATLAB Coder 8-7

Localization and Mapping . 8-8

Lidar Example: Build a map from lidar data . 8-8

xiii

HERE HD Live Map Linux Support: Read and visualize high-definition map
data on Linux machines . 8-8

Planning and Control . 8-9

Velocity Profiler: Generate the velocity profile of a driving path given
kinematic constraints . 8-9

Functionality being removed or changed . 8-9

R2019a

Ground Truth Labeling . 9-2

Ground Truth Labeling: Organize labels by logical groups, use assisted
freehand for pixel labeling, and other enhancements 9-2

Cuboid Scenario Simulation . 9-3

Scenario Reader: Read driving scenarios into Simulink to test vehicle
controllers and sensor fusion algorithms . 9-3

Scenario Generation Example: Generate virtual driving scenarios from
recorded vehicle data . 9-3

Detection and Tracking . 9-4

YOLO v2 Object Detection: Detect objects in a monocular camera using a
"you-only-look-once" v2 deep learning object detector 9-4

Tracking Examples: Track vehicles using lidar; evaluate the performance of
extended object trackers . 9-4

Localization and Mapping . 9-5

HERE HD Live Map Reader: Read and visualize data from high-definition
maps designed for automated driving applications 9-5

Custom Basemaps: Choose geographic basemaps on which to visualize
driving routes in geoplayer . 9-5

Planning and Control . 9-6

Longitudinal Controller: Control the velocity of autonomous vehicles 9-6
Dynamic Lateral Controller: Control the steering angle of autonomous

vehicles considering realistic vehicle dynamics 9-6
Path Smoother: Smooth a planned vehicle path . 9-6
Code Generation for Path Planning: Generate C/C++ code for vehicle path

planning using MATLAB Coder . 9-6

xiv Contents

R2018b

Ground Truth Labeling . 10-2

Define multiple custom labels in Ground Truth Labeler connector 10-2
Ground Truth Labeler enhancements . 10-2

Cuboid Scenario Simulation . 10-3

Bird's-Eye Scope for Simulink: Analyze sensor coverages, detections, and
tracks in your model . 10-3

Prebuilt Driving Scenarios: Test driving algorithms using Euro NCAP and
other prebuilt scenarios . 10-3

OpenDRIVE File Import Support: Load OpenDRIVE roads into a driving
scenario . 10-3

Radar Sensor Model Enhancements: Model occlusions in radar sensors
. 10-3

Actors follow road elevation and banking angles in Driving Scenario
Designer . 10-3

Functionality being removed or changed . 10-4

Detection and Tracking . 10-5

Monocular Camera Parameter Estimation: Configure a monocular camera
by estimating its extrinsic parameters . 10-5

Monocular camera setup with fisheye lens example 10-5
Sensor fusion and tracking examples . 10-5

Planning and Control . 10-6

Improved Collision Checking in vehicleCostmap Object: Configure collision
checking to plan paths through narrow passages 10-6

Kinematic Lateral Controller: Control the steering angle of an autonomous
vehicle . 10-6

Obtain transition poses and direction changes from a planned path 10-6
Functionality being removed or changed . 10-6

R2018a

Ground Truth Labeling . 11-2

Ground Truth Pixel Labeling: Interactively label individual pixels in video
data . 11-2

Ground Truth Label Attributes: Organize and classify ground truth labels
using attributes and sublabels . 11-2

Cuboid Scenario Simulation . 11-3

Driving Scenario Designer: Interactively define actors and driving scenarios
to test controllers and sensor fusion algorithms 11-3

xv

Add and detect lanes in Driving Scenario . 11-3
Path method being removed . 11-3

Detection and Tracking . 11-4

Lidar Segmentation: Quickly segment 3-D point clouds from lidar 11-4
Point Cloud Reader for Velodyne PCAP Files: Import Velodyne lidar data into

MATLAB . 11-4
Detect lanes more precisely by using third-degree polynomial lane boundary

models . 11-4
Transform [x,y,z] locations in vehicle coordinates to image coordinates

. 11-4
Direction of Yaw Angle Rotation Adjusted . 11-4

Localization and Mapping . 11-5

Streaming Geographic Map Display: Visualize a geographic route on a map
. 11-5

Planning and Control . 11-6

Path Planning: Plan driving paths using an RRT* path planner and costmap
. 11-6

Applications . 11-7

ACC Reference Application: Use a reference model to simulate and test
adaptive cruise controller (ACC) systems . 11-7

R2017b

Ground Truth Labeling . 12-2

Ground Truth Labeling App: Reverse playback capability while processing
algorithms . 12-2

Cuboid Scenario Simulation . 12-3

Sensor Simulation Using Simulink Blocks: Generate synthetic object lists
from camera and radar sensor models . 12-3

Code Generation for Sensor Models: Generate C code for camera and radar
sensor models . 12-3

Detection and Tracking . 12-4

Sensor Fusion Simulink Blocks: Track multiple objects and fuse detections
from multiple sensors . 12-4

Applications . 12-5

Autonomous Driving Examples . 12-5

xvi Contents

R2017a

Ground Truth Labeling . 13-2

Ground Truth Labeling . 13-2

Cuboid Scenario Simulation . 13-3

Bird’s-Eye Plot . 13-3
Driving Scenario Generation and Sensor Models 13-3

Detection and Tracking . 13-4

Monocular Camera Sensor Configuration . 13-4
Object and Lane Boundary Detection . 13-4
Multi-object Tracking . 13-4

Applications . 13-6

Automated Driving Examples . 13-6

xvii

R2023a

Version: 3.7

New Features

Bug Fixes

Compatibility Considerations

1

Ground Truth Labeling

Labeler Enhancements: Point ROI label definition support
This table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler
• Lidar Labeler
• Medical Image Labeler

Feature Image
Labeler

Video
Labeler

Ground
Truth
Labeler

Lidar
Labeler

Medica
l Image
Labele
r

New Image Labeler interface. Yes No No No No
Use the Point ROI label to mark
one or more keypoints in objects.

Yes Yes Yes No No

New naming scheme for pixel label
file names when you export ground
truth data. For more details, see
the “Pixel Label File Naming:
Unique filenames for image files
related to pixel labels” release
note.

Yes Yes Yes No No

Use the Smart Voxel tool to refine
point cloud labeling by marking the
foreground and background within
a region of interest.

No No No Yes No

Label a planar region within a
point cloud by selecting any three
points on the plane.

No No No Yes No

Configure, preview, and export 2-D
and 3-D animations of medical
image data.

No No No No Yes

View and navigate 2-D slices of a
medical volume using crosshair
navigation.

No No No No Yes

R2023a

1-2

Cuboid Scenario Simulation

Sensors in Driving Scenario: Add sensors to driving scenario and get
target poses with respect to host actors using MATLAB functions
Use the new addSensors function to add sensors to vehicles in a driving scenario. You can also get
the poses of targets in the range of each sensor with respect to the host vehicle by using the
targetPoses function.

Driving Scenario to RoadRunner: Export RoadRunner HD Map from
driving scenario for Euro NCAP-like scenes
You can now use the export function to export a driving scenario, created using the
drivingScenario object, as a RoadRunner HD Map data model. To perform additional
modifications and debug the HD Map before exporting, get the map using the getRoadRunnerHDMap
function, make the desired modifications in MATLAB®, and then write the HD Map to the .rrhd file
using the write function. You can then import the .rrhd file into RoadRunner and continue building
the scene. This requires a RoadRunner Scene Builder license.

ASAM OpenDRIVE Import Enhancements: Import geographic reference
of road network data
You can now import the geographic coordinates of a road network origin when you import an ASAM
OpenDRIVE® file into a driving scenario by using the roadNetwork function of the
drivingScenario object or the Driving Scenario Designer app. The ASAM OpenDRIVE file
specifies the geographic origin as a geoReference element.

 Cuboid Scenario Simulation

1-3

https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenariodesigner-app.html

Unreal Engine Scenario Simulation

Simulation 3D Environment Upgrade: Run 3D simulations using Unreal
Engine 4.27
The simulation 3D environment that comes installed with Automated Driving Toolbox is an Unreal
Engine® application. The application has been updated to Unreal Engine 4.27. Previously, the toolbox
used Unreal Engine 4.26.

For information about using Unreal Engine to create custom scenes, see “Customize Unreal Engine
Scenes for Automated Driving” and “Unreal Engine Simulation Environment Requirements and
Limitations”.

Compatibility Considerations
If your Simulink® model uses an Unreal Engine executable or project developed using a prior release
of the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package, the
simulation may return an error. To migrate the project to be compatible with the R2023a version of
the support package, see “Migrate Projects Developed Using Prior Support Packages”.

Simulation 3D Ultrasonic Array Block: Generate synthetic range
measurements in Unreal Engine scenarios with tunable acoustic
parameters
The Simulation 3D Ultrasonic Array block generates synthetic range measurements in a simulation
environment rendered using the Unreal Engine from Epic Games®. The block includes acoustic
parameters for the sensor. You can use those parameters to tune the physical model of the sensor
signal.

Custom Top-Down Visualization Example: Create a custom top-down
view of an Unreal Engine scene in Simulink
The “Set Up Top-Down Simulink Visualization for Unreal Engine Simulation” example shows how to
create a custom top-down view of a scene created in Unreal Engine during a Simulink simulation. For
your desired area in world coordinates, the example shows how to calculate the camera parameters
which will give you the correct top-down visualization. To visualize the desired area during the
simulation, you can then create a camera using the Simulation 3D Camera block and specify the
parameters that you calculated.

R2023a

1-4

RoadRunner Scenario Simulation

Sensor Simulation for RoadRunner Scenario: Simulate RoadRunner
Scenario with sensor models defined in MATLAB
Use the new SensorSimulation object to view and control the sensors in a RoadRunner scenario.
Configure the sensor models in MATLAB, and then use the addSensors function to add them to
vehicles in your RoadRunner scenario. You can then obtain ground truth measurements by using the
targetPoses and laneBoundaries functions, and process them to generate detections. You can
also visualize the detections by using the birdsEyePlot object. The SensorSimulation object
supports these sensor model System objects:

• visionDetectionGenerator
• ultrasonicDetectionGenerator
• drivingRadarDataGenerator

Sensor Simulation for RoadRunner Scenario: Simulate RoadRunner
Scenario with sensor models defined in Simulink
Use the new SensorSimulation object to view and control the sensors in a RoadRunner scenario.
You can now add sensor model blocks to a Simulink model that defines custom behavior for a
RoadRunner actor. To add the sensors to vehicles in your RoadRunner scenario, use the addSensors
function and specify the block paths to the sensor models. You can then obtain ground truth
measurements by using the RoadRunner Scenario Reader block, and process them to generate
detections. The SensorSimulation object supports these sensor model blocks:

• Vision Detection Generator
• Ultrasonic Detection Generator
• Driving Radar Data Generator

Offline Playback of RoadRunner Scenario Simulation: Replay
simulation from saved file
In R2023a, you can save a RoadRunner Scenario simulation log into a file with an .rrsimlog
extension and replay the simulation from the file. The simulation playback runs in the same
Roadrunner Scenario environment as the original simulation and does not involve any computation
from a cosimulation client such as MATLAB or Simulink.

Save the scenario simulation log of a Simulink.ScenarioSimulation object into a log file using
the save command. The set command allows you to replay the simulation.

You can inspect the saved log file using the load command.

User-Defined Events: Use custom events to control a RoadRunner
Scenario simulation or enable communication between actors
Starting in R2023a, you can create custom events in MATLAB and Simulink. An actor dispatches a
custom event, carrying some data, to RoadRunner Scenario to control a simulation in a specific way,

 RoadRunner Scenario Simulation

1-5

or to communicate with other actors. For example, you can arrange for all vehicles in a simulation to
stop at the same time using event parameters. User-defined events can be sent from an actor to a
scenario, or from an actor to all other actors in a scenario.

In MATLAB, use sendEvent and receiveEvent functions in the System object™ implementation of
an actor model to send and receive events from a scenario.

In Simulink, use the RoadRunner Scenario block to specify the bus object name corresponding to an
event name. The RoadRunner Scenario Writer and RoadRunner Scenario Reader blocks can now send
and receive events from a scenario.

Access lane location of all actors in a RoadRunner Scenario simulation
using MATLAB or Simulink
In R2023a, the new read-only topic Actor Lane Location allows you to access the lane location of
any actor.

In Simulink, you can read lane location values associated with an actor using the RoadRunner
Scenario Reader block.

In MATLAB System object, use the getAttribute method to read the lane location of all actor types.
This example code shows how to retrieve map location in System objects.

actorsim.getAttribute('LaneLocation')

Coordinate Reference Systems: Read RoadRunner HD map using
readCRS function
Read RoadRunner HD map data using the readCRS function and specifying a roadrunnerHDMap
object. The function returns the coordinate reference system as a projcrs or a geocrs object.

Functionality being removed or changed
Updates to accessing map location of actors
Behavior change

Starting in R2023a, using MapLocation and its bus definition BusVehicleMaplocation are not
supported when you access Vehicle Pose using a RoadRunner Scenario Reader block. To read an
actor location, use the new dedicated topic Actor Lane Location. This change allows you to
access any actor location, including the vehicle actors.

To use Actor Lane Location in the RoadRunner Scenario Reader block:

1 Set Topic Category to Actor.
2 Set Actor Type to All Types.
3 Set Topic to Actor Lane Location.

Starting in R2023a, writing actor location using the RoadRunner Scenario Writer block is not
supported because the new topic Actor Lane Location is read-only.

If you created models before R2023a and used MapLocation, starting in R2023a, your models error
out and require an update.

R2023a

1-6

• If you have a Simulink model that reads MapLocation using the RoadRunner Scenario Reader
block, update your model and use Actor Lane Location.

• If you have a Simulink model that uses RoadRunner Scenario Writer block and MapLocation,
remove that part of your model because it is not supported.

Starting in R2023a, if you have a MATLAB System object that accesses actor location using
getAttribute, update your System object to use the parameter LaneLocation instead of
Maplocation.

 RoadRunner Scenario Simulation

1-7

Scenario Generation and Variation

Scenario Builder Enhancements and Examples: Track lane boundaries,
store lane data, store actor track list data, other feature
improvements, and new examples
New Objects

The Scenario Builder for Automated Driving Toolbox support package now includes these objects to
track lane boundaries, store lane data, and store actor track list information.

actorTracklist Stores recorded actor track list data with
timestamps.

laneData Stores recorded lane boundary data with
timestamps.

laneBoundaryTracker Preprocesses, tracks, and postprocesses the lane
boundaries using customized trackers.

To use these objects, you must download the Scenario Builder for Automated Driving Toolbox from
the Add-On Explorer. For more information about installing add-ons, see Get and Manage Add-Ons.

actorprops Function Enhancement

When specifying the tracklist argument of the actorprops function, you can now use an
actorTracklist object.

updateLaneSpec Function Enhancements

When specifying the laneDetections argument of the updateLaneSpec function, you can now use
a laneData object.

When specifying the refLaneSpec argument of the updateLaneSpec function, you can now use a
dictionary object.

New Examples

The “Ego Vehicle Localization Using GPS and IMU Fusion for Scenario Generation” example shows
how to perform ego vehicle localization by fusing global positioning system (GPS) and inertial
measurement unit (IMU) sensor data to create a virtual scenario.

The “Ego Localization Using Lane Detections and HD Map for Scenario Generation” example shows
how to perform lane-level localization of an ego vehicle using lane detections, HD map data, and GPS
data, as well as generate a RoadRunner scenario.

The “Generate Road Scene Using Lanes from Labeled Recorded Data” example shows how to
generate a road scene using lanes from labeled camera images and raw lidar data.

The “Fuse Prerecorded Lidar and Camera Data to Generate Vehicle Track List for Scenario
Generation” example shows how to fuse prerecorded lidar and camera object detections to create a
smoothed vehicle track list for creating virtual scenarios.

R2023a

1-8

https://www.mathworks.com/help/releases/R2020a/matlab/matlab_env/get-add-ons.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/actorprops.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/updatelanespec.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/updatelanespec.html

Variant Generator Enhancements and Examples: Obtain collision
information feature, and new example
getCollisionData Function

The Scenario Variant Generator for Automated Driving Toolbox support package includes the
getCollisionData function, which gets the details of a collision between a pair of actors in a
specified seed scenario.

To use this function, you must download the Scenario Variant Generator for Automated Driving
Toolbox support package from the Add-On Explorer. For more information about installing add-ons,
see Get and Manage Add-Ons.

New Example

The “Translocate Collision from Seed Scenario to Target Scene” example shows how to translocate a
collision from a RoadRunner seed scenario to a target scene.

 Scenario Generation and Variation

1-9

https://www.mathworks.com/help/releases/R2020a/matlab/matlab_env/get-add-ons.html

Detection and Tracking

YOLO v3 Object Detection: Detect objects in monocular camera
images using you only look once version 3 (YOLO v3) deep learning
network
The configureDetectorMonoCamera function can now configure a monocular camera to use the
YOLO v3 object detector, returning an yolov3ObjectDetectorMonoCamera object.

R2023a

1-10

Localization and Mapping

HERE HD Live Map Data: Set default basemap for visualizations of
HERE HD Live Map layer data
You can now set the default basemap for visualizations of HERE HD Live Map1 layer data, including:

• Plots created using the plot object function for the hereHDLMReader object.
• The HERE HD Live Map Import dialog box within the Driving Scenario Designer app.

MATLAB stores the default basemap in the MATLAB settings tree. You can change the default
basemap by changing the Basemap setting. This code shows how to set the personal value for the
basemap to the "streets" basemap.

s = settings;
s.driving.heremaps.Basemap.PersonalValue = "streets";

For an example that shows how to set the basemap to a basemap from HERE, see “Set Default
Basemap for Plots Created from Layer Data” on the plot object reference page. To add a HERE
basemap, you must have a valid license from HERE.

1 You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

 Localization and Mapping

1-11

https://www.here.com/
https://www.here.com

Planning and Control

Path Planning Using Lidar Map: Plan reference path for autonomous
vehicle navigation
The “Path Planning Using 3D Lidar Map” example shows how to plan a reference path for
autonomous vehicle navigation using a normal distribution transform (NDT) map and a Hybrid A*
path planner.

Lane-Level Path Planning: Design lane-level path planner in MATLAB
and simulate with RoadRunner Scenario
The “Lane-Level Path Planning with RoadRunner Scenario” example shows how to plan a vehicle path
between the specified start and goal points using MATLAB and follow the planned path in
RoadRunner Scenario.

R2023a

1-12

Applications

Truck Platooning Application: Cosimulate platooning application with
RoadRunner Scenario and Simulink
The “Truck Platooning with RoadRunner Scenario” example shows how to cosimulate a platooning
application with RoadRunner Scenario and Simulink. The platooning system contains vehicle-to-
vehicle (V2V) communication, tractor-trailer dynamics, longitudinal controller, and lateral controller
components. The lateral controller enables you to test the platooning application on curved road
scenarios.

Autonomous Emergency Braking: Design and simulate autonomous
emergency braking (AEB) system with high-fidelity vehicle dynamics
The “Autonomous Emergency Braking with High-Fidelity Vehicle Dynamics” example shows how to
design an autonomous emergency braking (AEB) system in Simulink and cosimulate the system with
RoadRunner Scenario using a scene that contains elevated roads. This example models an AEB
system using high-fidelity vehicle dynamics with 14 degrees-of-freedom and uses camera, radar, and
terrain sensors in the 3D simulation environment.

Highway Lane Following Example Enhancements: Compute
performance metrics for different components of lane-following
system
The “Highway Lane Following” example now enables you to compute performance metrics for the
lane marker detector, vehicle detector, and forward vehicle sensor fusion components of the lane-
following system. Using these metrics, you can analyze the performance of each component and
evaluate its impact on overall system performance.

You can also use component-level metrics with the “Automate Testing for Highway Lane Following”
example.

 Applications

1-13

R2022b

Version: 3.6

New Features

Bug Fixes

Compatibility Considerations

2

Ground Truth Labeling

Labeler Enhancements: 3D line ROI labels for point clouds
This table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler (Automated Driving Toolbox)
• Lidar Labeler (Lidar Toolbox)
• Medical Image Labeler (Medical Imaging Toolbox) — Introduced in R2022b

Feature Image
Labeler

Video
Labeler

Ground
Truth
Labeler

Lidar
Labeler

Medica
l Image
Labele
r

The cuboid2img function returns
rectangular projected cuboids to
create data compatible with the
labeling apps.

Yes Yes Yes No No

Use a function interface with
labeler app to create a custom
automation algorithm. For more
details, see Create Automation
Algorithm Function for Labeling

Yes Yes Yes No No

Automate projected cuboid labeling
with the temporal interpolator
automation algorithm.

No Yes Yes No No

The boxLabelDatastore object,
the gatherLabelData
(Automated Driving Toolbox), and
the
objectDetectorTrainingData
object, used in creating training
data for object detection, now
support 2-D projected cuboid
labels.

Yes Yes Yes No No

Visualize the color information of
the point cloud using the updated
colormap.

No No No Yes No

Add background color for the point
cloud.

No No Yes Yes No

Visualize the XY, YZ, and ZX views
of the point cloud.

No No Yes Yes No

Label 2-D and 3-D medical images
for semantic segmentation.

No No No No Yes

R2022b

2-2

https://www.mathworks.com/help/releases/R2022b/vision/ref/imagelabeler-app.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2022b/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/releases/R2022b/medical-imaging/ref/medicalimagelabeler-app.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/cuboid2img.html
https://www.mathworks.com/help/vision/ug/create-automation-algorithm-function-for-labeling.html
https://www.mathworks.com/help/vision/ug/create-automation-algorithm-function-for-labeling.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/boxlabeldatastore.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/groundtruthmultisignal.gatherlabeldata.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/objectdetectortrainingdata.html

Functionality being removed or changed
Keyboard shortcuts to pan across a point cloud frame has changed
Behavior change

Starting from R2022b, use a, d, w, and s as keyboard shortcuts for Ground Truth Labeler and
Lidar Labeler (Lidar Toolbox) apps to pan across a point cloud frame.

Action Keyboard Shortcut
Pan forward or backward w — Forward

s — Backward
Pan left or right a — Left

d — Right

 Ground Truth Labeling

2-3

https://www.mathworks.com/help/releases/R2022b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2022b/lidar/ref/lidarlabeler-app.html

File I/O

ADTF File Reader Enhancements: Read new stream types, sample and
chunk timestamps for streams
You can now use the adtfFileReader object to read adtf/substreams and adtf/plaintype
stream types. Also, for every frame in a stream, you can now read a sample timestamp, and a chunk
timestamp along with a flag indicating whether the read operation was successful. For data items,
you can read a substream index for every frame. For an example of these enhancements, see Read
Data From ADTF DAT Files.

R2022b

2-4

https://www.mathworks.com/help/releases/R2022a/driving/ref/adtffilereader.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/read-data-from-adtf-dat-files.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/read-data-from-adtf-dat-files.html

Cuboid Scenario Simulation

Ultrasonic Detection Generator Block: Generate synthetic range
measurements in driving scenarios in Simulink
Use the Ultrasonic Detection Generator block to simulate an ultrasonic sensor in Simulink and
generate range measurements.

You can now also export scenarios that contain ultrasonic sensors from the Driving Scenario
Designer app to Simulink.

Bird's-Eye Scope Enhancements: Visualize ultrasonic sensor
detections
In the Bird's-Eye Scope, you can now visualize sensor coverage area and detections obtained from
the ultrasonic sensors modeled using the Ultrasonic Detection Generator block.

ASAM OpenDRIVE Import Enhancements: Import multiple lane
specifications and road heading angle information
When you import ASAM OpenDRIVE file into a driving scenario by using the roadNetwork function
of the drivingScenario object, or by using the Driving Scenario Designer app, you can now
import one-way roads with multiple lane specifications. Previously, multiple lane specifications for
one-way roads were not imported, and the lane specifications of the first road segment were applied
to the entire one-way road.

You can also import road heading angle information specified in an ASAM OpenDRIVE file when you
import an ASAM OpenDRIVE file into a driving scenario. This heading angle information enables you
to import roads with exact shapes as specified in the source file.

ASAM OpenDRIVE Export Enhancements: Export multiple lane
specifications for a road with single-lane road segment
When you export a road network from driving scenario to an ASAM OpenDRIVE file by using the
Driving Scenario Designer app or the export function of the drivingScenario object, you can
now export multiple lane specifications for a road with single-lane road segment. Previously, multiple
lane specifications were not exported for such a road, and the lane specifications of the first road
segment were applied to the entire road.

 Cuboid Scenario Simulation

2-5

https://www.mathworks.com/help/releases/R2022b/driving/ref/ultrasonicdetectiongenerator.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/birdseyescope-app.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/ultrasonicdetectiongenerator.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenario.export.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/drivingscenario.html

Unreal Engine Scenario Simulation

Simulation 3D Ultrasonic Sensor Block: Generate synthetic range
measurements in Unreal Engine scenarios
The Simulation 3D Ultrasonic Sensor block generates synthetic range measurements in a simulation
environment rendered using the Unreal Engine from Epic Games. The block includes parameters for
sensor mounting and field of view.

Simulation 3D Pedestrian Block: Model a pedestrian in Unreal Engine
scenarios
The Simulation 3D Pedestrian block models a pedestrian that follows the ground terrain in a
simulation environment rendered using the Unreal Engine from Epic Games.The block includes
parameters to specify the scale, type, position and orientation of the pedestrian.

Simulation 3D Bicyclist Block: Model a bicyclist in Unreal Engine
scenarios
The Simulation 3D Bicyclist block models a bicyclist that follows the ground terrain in a simulation
environment rendered using the Unreal Engine from Epic Games.The block includes parameters to
specify the scale, position and orientation of the bicyclist.

Simulation 3D Scene Configuration: Use new MATLAB API to download
maps locally from the server
Starting in R2022b, you can use the sim3d.maps class and its object functions to download prebuilt
Unreal Engine scenes and access them directly from the Simulation 3D Scene Configuration block.

• The sim3d.maps.Map.download function downloads a map from the server and makes the map
locally available.

• The sim3d.maps.Map.delete function deletes the map that you download from the server.
• The sim3d.maps.Map.server function lists all the maps on the server that are available for

download.
• The sim3d.maps.Map.local function lists the locally available maps downloaded from the

server.

Simulation 3D Scene Configuration Block: Specify ASAM OpenDRIVE
file for lane detections
Select the Simulation 3D Scene Configuration block parameter Select ASAM OpenDRIVE file to
specify an ASAM OpenDRIVE file. You will need an ASAM OpenDRIVE file if you want to perform any
lane detection applications with custom scenes using the Simulation 3D Vision Detection Generator
(Automated Driving Toolbox) block.

R2022b

2-6

https://www.mathworks.com/help/releases/R2022b/driving/ref/simulation3dultrasonicsensor.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulation3dpedestrian.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulation3dbicyclist.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/sim3d.maps.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulation3dsceneconfiguration.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/sim3d.map.sim3d.maps.map.download.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/sim3d.map.sim3d.maps.map.delete.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/sim3d.map.sim3d.maps.map.server.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/sim3d.map.sim3d.maps.map.local.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulation3dsceneconfiguration.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulation3dvisiondetectiongenerator.html

Functionality being removed or changed
Updated scenes
Behavior change

Starting from R2022b, these scenes in the Unreal Engine 3D environment are rendered using
RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are
moved from their pre-R2022b locations.

• Curved Road
• Double Lane Change
• Open Surface
• Parking Lot
• Straight Road
• US City Block
• US Highway

 Unreal Engine Scenario Simulation

2-7

https://www.mathworks.com/help/releases/R2022b/driving/ref/curvedroad.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/doublelanechange.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/opensurface.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/parkinglot.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/straightroad.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/uscityblock.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/ushighway.html

RoadRunner Scenario Simulation

High-Definition Maps: Import map data into RoadRunner using
MATLAB functions
Using the roadrunnerHDMap object and its associated functions, you can convert high-definition
(HD) map data into a RoadRunner HD Map road data model and import your data into RoadRunner.
Using these functions, you can:

• Create a new map, edit an existing map, and read and write from file
• Represent lanes, lane boundaries, lane markings, junctions, barriers, and signs
• Write the map to a RoadRunner HD Map (.rrhd) file.

The functions require a RoadRunner license. For more details, see Programmatic Scene and Scenario
Management.

getAction Function Enhancements: Retrieve longitudinal distance
action of actor
You can now use the getAction function to return the longitudinal distance action of an actor with
respect to a reference actor. The longitudinal distance between two actors is measured either as a
space distance or a time distance.

getAttribute Function Enhancements: Retrieve child or parent actors
from actor group
You can now use the getAttribute function of a Simulink.ActorSimulation object to retrieve
the immediate child or parent actor of the specified actor.

• children = getAttribute(actorSim, 'Children') returns the immediate child actors of
the specified Simulink.ActorSimulation object. The child actors are returned in the form of
an array of Simulink.ActorSimulation objects. If the input actor does not have any child
actors, then an empty array is returned.

• parent = getAttribute(actorSim, 'Parent') returns the immediate parent actor of the
specified Simulink.ActorSimulation object. The parent actor is returned in the form of a
Simulink.ActorSimulation object.

You can use these functions within a MATLAB System object to program the behavior of an actor
group. For an example of modeling actor group behavior in MATLAB, see Path Following Actor Group
Behavior.

RoadRunner Scenario Writer Block: Update all child actors of actor
group in RoadRunner Scenario from Simulink
You can now use a RoadRunner Scenario Writer block to update multiple RoadRunner Scenario actors
during the same time step in the following ways.

• By programming one RoadRunner Scenario Writer block to write several messages to a scenario,
where each message updates a topic for an actor of a different ActorID.

R2022b

2-8

https://www.mathworks.com/help/releases/R2022b/driving/ref/roadrunnerhdmap.html
https://www.mathworks.com/help/releases/R2022b/driving/programmatic-scene-and-scenario-interaction.html
https://www.mathworks.com/help/releases/R2022b/driving/programmatic-scene-and-scenario-interaction.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulink.scenariosimulation.getaction.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulink.actorsimulation.getattribute.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulink.actorsimulation.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-matlab.html#mw_51d9d2f6-b5c2-42b3-80f3-df2fb2a69854
https://www.mathworks.com/help/releases/R2022b/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-matlab.html#mw_51d9d2f6-b5c2-42b3-80f3-df2fb2a69854
https://www.mathworks.com/help/releases/R2022b/driving/ref/roadrunnerscenariowriter.html

• By using more than one RoadRunner Scenario Writer block to write messages to a scenario, where
each block handles updates for an actor of a different ActorID.

This capability allows you to control the behavior of each child actor in an actor group. In this way,
you can control the behavior of an actor group as a whole from one Simulink behavior model.

User-Defined Actions: Read and process user-defined actions from
RoadRunner Scenario using MATLAB functions
You can use a MATLAB actor model to handle user-defined actions from RoadRunner Scenario. These
MATLAB functions enable you to retrieve and write user-defined action parameters back to a
scenario.

• uda = getAction(actorSim, 'UserDefinedAction', 'actionName') returns
information about the specified user-defined action for the Simulink.ActorSimulation actor
object actorSim, for example, the action name, action ID, and parameters. For more information,
see getAction.

• sendEvent(actorSim, 'ActionComplete', 'actionID') sends a message to a scenario
indicating that the action with identifier ActionID is complete. The RoadRunner Scenario
simulation can now proceed to the next action phase. For more information, see sendEvent.

For an example of a MATLAB actor model using user-defined actions, see Model Vehicle Behavior
Using User-Defined Actions in MATLAB (RoadRunner Scenario).

User-Defined Actions: Read and process user-defined actions from
RoadRunner Scenario using Simulink behavior model
You can create a Simulink behavior model to handle user-defined actions from RoadRunner Scenario.

To get started, you must first convert a user-defined action to a Simulink.Bus object using the Type
Editor (Simulink). Then, export the Simulink.Bus object to a MAT file and load it into the MATLAB
workspace. For more information, see Author RoadRunner Actor Behavior Using User-Defined
Actions in Simulink.

These Simulink blocks enable you to retrieve and return user-defined action parameters back to a
scenario.

• RoadRunner Scenario — Associates Action name as entered in RoadRunner Scenario with the
name of the MAT file (Bus object name).

• RoadRunner Scenario Reader — Reads Action name from a simulation at runtime.
• RoadRunner Scenario Writer — Conveys completion of a user-defined action to a simulation by

publishing an Action Complete event.

You can perform required calculations on actor parameters by using standard blocks from the
Simulink block library.

For an example of a Simulink actor behavior model using user-defined actions, see Model Vehicle
Behavior Using User-Defined Actions in Simulink (RoadRunner Scenario).

Simulink Logging for User-Defined Actions

The Simulink.ScenarioLog object is extended to log user-defined actions.

 RoadRunner Scenario Simulation

2-9

https://www.mathworks.com/help/releases/R2022b/driving/ref/simulink.scenariosimulation.getaction.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/sendevent.html
https://www.mathworks.com/help/releases/R2022b/roadrunner-scenario/ug/design-vehicle-following-user-defined-actions-scenario.html#mw_c07341d6-8e94-4c09-ab46-6c689cc76aa0
https://www.mathworks.com/help/releases/R2022b/roadrunner-scenario/ug/design-vehicle-following-user-defined-actions-scenario.html#mw_c07341d6-8e94-4c09-ab46-6c689cc76aa0
https://www.mathworks.com/help/releases/R2022b/simulink/slref/typeeditor.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/typeeditor.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-simulink.html#mw_f12b8afc-3bbe-4b01-a523-00240f6b6e7e
https://www.mathworks.com/help/releases/R2022b/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-simulink.html#mw_f12b8afc-3bbe-4b01-a523-00240f6b6e7e
https://www.mathworks.com/help/releases/R2022b/roadrunner-scenario/ug/design-vehicle-following-user-defined-actions-scenario.html#mw_ff996f09-de59-43b9-93c1-ea2ce7d09dd7
https://www.mathworks.com/help/releases/R2022b/roadrunner-scenario/ug/design-vehicle-following-user-defined-actions-scenario.html#mw_ff996f09-de59-43b9-93c1-ea2ce7d09dd7
https://www.mathworks.com/help/releases/R2022b/driving/ref/simulink.scenariolog.html

Timeout value: Set timeout value for connection between MATLAB and
RoadRunner Scenario
Starting in R2022b, you can change the timeout value for the connection between MATLAB and
RoadRunner Scenario by using the settings function.

In the previous release, this timeout value was fixed at 300 seconds.

Use the settings function to change the value of the RoadRunner application’s Timeout setting.
The unit of measurement for the timeout value is seconds. For example:

s = settings;
s.roadrunner.application.Timeout.TemporaryValue = 10;

In this case, the temporary value is cleared at the end of the current MATLAB session. For more
information, see settings.

The actual timeout value is then the greater of the specified value and the default timeout value for
each event type. For more information, see Timeout Values (RoadRunner Scenario).

Application Examples: Simulate autonomous emergency braking and
highway lane following applications with RoadRunner Scenario
The Autonomous Emergency Braking with RoadRunner Scenario example shows how to simulate an
autonomous emergency braking (AEB) system, designed in Simulink, with RoadRunner Scenario. The
example demonstrates how to use vision and radar detection sensors and generate speed variations
for both the vehicle under test and the global vehicle target. You can use these processes to test the
AEB system per the European New Car Assessment Programme (Euro NCAP) test protocols.

The Highway Lane Following with RoadRunner Scenario example shows how to cosimulate a highway
lane-following application, designed in Simulink, with RoadRunner Scenario and Unreal Engine. The
highway lane-following application uses an Unreal Engine simulation environment to model
detections from camera and radar sensors. The highway lane-following application has controller,
sensor fusion, and vision processing components that enable the ego vehicle to follow lanes and avoid
collision with other vehicles.

R2022b

2-10

https://www.mathworks.com/help/releases/R2022b/matlab/ref/settings.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/settings.html
https://www.mathworks.com/help/releases/R2022b/roadrunner-scenario/ref/simulationconfiguration.html#mw_68370398-1324-4a9c-a6b2-e985ba0e81e7
https://www.mathworks.com/help/releases/R2022b/driving/ug/autonomous-emergency-braking-with-roadrunner-scenario.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/highway-lane-following-with-roadrunner-scenario.html

Scenario Generation and Variation

Scenario Builder: Scenario Builder for Automated Driving Toolbox
support package
The Scenario Builder for Automated Driving Toolbox support package offers functions to create
virtual driving scenarios from the vehicle data recorded using various sensors.

For an overview of the Scenario Builder for Automated Driving Toolbox support package capabilities,
see Overview of Scenario Generation from Recorded Sensor Data.

You can process GPS data, lane detections, and actor track list to extract road, lane, and actor
information by using these functions.

getMapROI Compute geographic bounding box coordinates
from GPS data.

roadprops Extract road properties from road network file or
map data.

selectActorRoads Extract properties of roads in path of actor.
updateLaneSpec Update lane specifications using sensor

detections.
actorprops Generate actor properties from track list.

You can create virtual driving scenarios from vehicle data recorded using various sensors, such as a
global positioning system (GPS), inertial measurement unit (IMU), camera, or lidar sensor. To create
virtual driving scenarios, you can use raw sensor data as well as processed actor track lists or lane
detections.

To get started creating virtual scene using sensor data, see these examples:

• Generate RoadRunner Scene from Recorded Lidar Data
• Generate High Definition Scene from Lane Detections
• Extract Lane Information from Recorded Camera Data for Scene Generation
• Preprocess Lane Detections for Scenario Generation

To get started creating virtual scenario using sensor data, see these examples:

• Generate Scenario from Actor Track List and GPS Data
• Generate RoadRunner Scenario from Recorded Sensor Data
• Extract Vehicle Track List from Recorded Lidar Data for Scenario Generation
• Extract Vehicle Track List from Recorded Camera Data for Scenario Generation
• Improve Ego Vehicle Localization
• Smooth GPS Waypoints for Ego Localization

To use these functions and examples, you must download the Scenario Builder for Automated Driving
Toolbox from the Add-On Explorer. For more information about installing add-ons, see Get and
Manage Add-Ons.

 Scenario Generation and Variation

2-11

https://www.mathworks.com/help/releases/R2022b/driving/ug/overview-of-scenario-generation-from-recorded-sensor-data.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/getmaproi.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/roadprops.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/selectactorroads.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/updatelanespec.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/actorprops.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/generate-roadrunner-hd-map-from-lidar-data-for-scenario-generation.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/build-high-definition-road-scene-from-lane-detections-and-openstreetmap.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/extract-lane-information-from-recorded-camera-data-for-scene-generation.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/preprocess-lane-detections-for-scenario-generation.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/generate-scenario-from-recorded-actor-tracklist-and-gps-data.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/generate-roadrunner-scenario-from-recorded-sensor-data.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/extract-vehicle-tracklist-from-recorded-lidar-data-for-scenario-generation.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/extract-vehicle-tracklist-from-recorded-camera-data-for-scenario-generation.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/ego-vehicle-localization-improvement.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/gps-smoothing-for-ego-localization.html
https://www.mathworks.com/help/releases/R2020a/matlab/matlab_env/get-add-ons.html
https://www.mathworks.com/help/releases/R2020a/matlab/matlab_env/get-add-ons.html

Variant Generator: Scenario Variant Generator for Automated Driving
Toolbox support package
The Scenario Variant Generator for Automated Driving Toolbox support package offers functions to
automatically generate multiple scenarios by varying the parameters of a seed scenario.

For an overview of the Scenario Variant Generator for Automated Driving Toolbox support package
capabilities, see Overview of Scenario Variant Generation.

You can extract properties from a seed scenario to use to generate scenario variants by using these
functions.

getScenarioDescriptor Extract properties from input scenario to
generate scenario variants.

getScenario Get scenario object from scenario descriptor
object.

You can generate scenario variations to perform safety assessments of various automated driving
applications. These applications include autonomous emergency braking (AEB), lane keep assist
(LKA), and adaptive cruise control (ACC), which you can assess per European New Car Assessment
Programme (Euro NCAP®) test protocols. To get started creating scenario variants for safety
assessments, see these examples:

• Generate Scenario Variants for Testing AEB Pedestrian Systems
• Generate Scenario Variants by Modifying Actor Dimensions
• Generate Scenario Variants for Testing ACC Systems
• Generate Variants of ACC Target Cut-In Scenario
• Generate Scenario Variants for Lane Keep Assist Testing

To use these functions and examples, you must download the Scenario Variant Generator for
Automated Driving Toolbox support package from the Add-On Explorer. For more information about
installing add-ons, see Get and Manage Add-Ons.

R2022b

2-12

https://www.mathworks.com/help/releases/R2022b/driving/ug/scenario-variant-generation-overview.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/getscenariodescriptor.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/getscenario.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/scenario-variant-generation-for-testing-car-to-pedestrian-aeb-systems.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/dimension-variations-for-test-scenario.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/scenario-variant-generation-for-testing-acc-systems.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/scenario-variations-for-testing-acc-with-target-cut-in.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/scenario-variant-generation-for-lane-keep-assist-testing.html
https://www.mathworks.com/help/releases/R2020a/matlab/matlab_env/get-add-ons.html

Detection and Tracking

Monocamera Parameter Estimation: Estimate monocular camera
parameters using the road image and scene geometry
You can now use the estimateMonoCameraFromScene function to estimate the parameters of a
monoCamera object from the road image input. You must also specify the scene geometry in the form
of a trapezoid in both the pixel coordinates of the road image and the corresponding real-world
rectangle dimensions.

3D Cuboid Computation: Compute 3D cuboids from 2D projected
cuboids and camera parameters
Use the projectedCuboidTo3D function to compute 3D cuboids in vehicle coordinates, from the 2D
projected cuboids in pixel coordinates, and the camera parameters. You can also specify how to align
the 3D cuboid with the object by specifying which side of the cuboid aligns with the front of the
object.

Multi-Object Tracker Enhancements: Confirm tracks directly, and
obtain position, velocity, and covariance from tracks using motion
model name input
You can now directly confirm a track by using the confirmTrack object function of the
multiObjectTracker System Objects™.

You can now use the getTrackPositions and getTrackVelocities functions to obtain the
positions, velocities, and associated covariances of tracks by specifying the motion model name as an
input. For example,

[positions,covariances] = getTrackPositions(tracks,"constvel")

returns the position and position covariances in tracks based on the constant velocity model defined
by the constvel (Sensor Fusion and Tracking Toolbox) function.

Obtain position, velocity, and covariance from tracks using motion
model name input
By using the getTrackPositions and getTrackVelocities functions, you can now obtain
positions, velocities, and associated covariances of tracks by specifying the motion model name as an
input. For example,

[positions,covariances] = getTrackPositions(tracks,"constvel")

returns positions and position covariances in tracks based on the constant-velocity model in the
constvel function. Previously, you could use only the position selector or velocity selector input to
obtain the position and velocity states. For example,

positionSelector = [1 0 0 0 0 0 0 0 0;
 0 0 0 1 0 0 0 0 0;

 Detection and Tracking

2-13

https://www.mathworks.com/help/releases/R2022b/driving/ref/estimatemonocamerafromscene.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/monocamera.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/projectedcuboidto3d.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/multiobjecttracker.confirmtrack.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/gettrackpositions.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/gettrackvelocities.html
https://www.mathworks.com/help/releases/R2022b/fusion/ref/constvel.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/gettrackpositions.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/gettrackvelocities.html
https://www.mathworks.com/help/releases/R2022b/driving/ref/constvel.html

 0 0 0 0 0 0 1 0 0];
[positions,covariances] = getTrackPositions(tracks,positionSelector)

R2022b

2-14

Applications

Truck Platooning Example: Design and simulate platooning application
using V2V communication
The Truck Platooning Using Vehicle-to-Vehicle Communication example shows how to model vehicle-
to-vehicle communication, a platooning controller, and tractor-trailer dynamics to design and simulate
platooning of trucks in an Unreal Engine simulation environment.

PIL Testing Example: Automate processor-in-the-loop testing of
forward vehicle sensor fusion algorithm
The Automate PIL Testing for Forward Vehicle Sensor Fusion example shows the workflow to
generate embedded code from a forward vehicle sensor fusion algorithm and verify it using
processor-in-the-loop (PIL) testing. The example also shows how to automate PIL testing of this
algorithm on an NVIDIA® Jetson™ hardware board. The generated code of this algorithm requires
less than 1 MB of memory during execution, which makes it suitable for testing on any hardware with
at least 1 MB of RAM.

Scenario Variants of AEB System Example: Automate testing of AEB
system using variants of Euro NCAP test scenario
The Automate Testing for Scenario Variants of AEB System example enables you to test an
autonomous emergency braking (AEB) system by generating multiple variants of the European New
Car Assessment Programme (Euro NCAP) Car-to-Pedestrian Nearside Child (CPNC) driving scenario.
The example shows how to vary ego speed and collision point parameters to generate scenario
variants. The example also shows how to perform scripted iterative testing, using Simulink Test™, to
automate testing of generated scenario variants.

 Applications

2-15

https://www.mathworks.com/help/releases/R2022b/driving/ug/truck-platooning-using-vehicle-to-vehicle-communication.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/automate-pil-testing-for-forward-vehicle-sensor-fusion.html
https://www.mathworks.com/help/releases/R2022b/driving/ug/automate-testing-for-scenario-variants-of-aeb-system.html

R2022a

Version: 3.5

New Features

Bug Fixes

Compatibility Considerations

3

Ground Truth Labeling

Labeler Enhancements: 3D line ROI labels for point clouds
The following table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler
• Lidar Labeler (Lidar Toolbox)

Enhancement Image
Labeler

Video
Labeler

Ground
Truth
Labeler

Lidar
Labeler

Draw, visualize, and export semantic
labels in the point cloud.

No No No Yes

Create training data for object
detection in point clouds by using the
lidarObjectDetectorTrainingDat
a function.

No No No Yes

Import multiframe DICOM images. Yes No No No
Create 3-D line ROI for point cloud
data.

No No Yes Yes

Create voxel ROI for point cloud data. No No No Yes
Show or hide pixel labels in a labeled
image or video.

Yes Yes Yes No

R2022a

3-2

https://www.mathworks.com/help/releases/R2022a/vision/ref/imagelabeler-app.html
https://www.mathworks.com/help/releases/R2022a/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2022a/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/releases/R2022a/lidar/ref/lidarobjectdetectortrainingdata.html
https://www.mathworks.com/help/releases/R2022a/lidar/ref/lidarobjectdetectortrainingdata.html

File I/O

ADTF File Reader: Read data from Automotive Data and Time-
Triggered Framework (ADTF) DAT file
Automated Driving Toolbox now supports reading data from files stored in the Automated Data and
Time-Triggered Framework (ADTF), developed by Elektrobit for automated driving applications. Use
the adtfFileReader object to read stream information and inspect the contents of an ADTF DAT
file. To select the messages of a specific sensor from this file, use the select function. You can then
use the read or readNext function to read the messages contained in the file, and use these
messages in automated driving workflows. For an example, see Read Data From ADTF DAT Files.

Reading ADTF DAT files is not supported for Mac platforms.

 File I/O

3-3

https://www.mathworks.com/help/releases/R2022a/driving/ref/adtffilereader.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/adtffilereader.select.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/adtfstreamreader.read.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/adtfstreamreader.readnext.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/read-data-from-adtf-dat-files.html

Cuboid Scenario Simulation

Ultrasonic Sensor Model: Generate synthetic range measurements
from programmatic driving scenarios and Driving Scenario Designer
app
Use the ultrasonicDetectionGenerator System object™ to model an ultrasonic sensor and
generate synthetic range data for actors in a drivingScenario object. To visualize the ultrasonic
detections on a bird's-eye plot, create a rangeDetectionPlotter object, and then plot the set of
ranges using the plotRangeDetection function.

In the Driving Scenario Designer (DSD) app, you can now model an ultrasonic sensor and
generate synthetic range data from a driving scenario. The bird's-eye-plot in the DSD app visualizes
the ranges detected by the ultrasonic sensor as arcs. When you export a scenario containing an
ultrasonic sensor to MATLAB, the sensor is represented as an ultrasonicDetectionGenerator
System object.

Bird's-Eye Scope Enhancement: Run simulations from previously
saved models without finding signals again
When visualizing signals in Simulink models by using the Bird's-Eye Scope, you can now
immediately visualize signals logged from the last time you saved and closed the model. Previously,
when reopening a model, you had to click Find Signals to find all signals in the model again before
visualizing them. To find and visualize new signals in a reopened model, click Update Signals.

Radar Sensor Performance Enhancement: Simulate driving scenarios
with radar sensors faster in MATLAB and Simulink
Radar sensors modeled using drivingRadarDataGenerator system object or Driving Radar Data
Generator block now have improved simulation performance in complex driving scenarios with
extended targets. For a driving scenario containing 7 radar sensors, a 42% average performance
improvement has been observed on Windows 10 platform.

ASAM OpenSCENARIO Export Enhancements: Export road networks,
actors, and trajectories to ASAM OpenSCENARIO file version 1.1
You can now export a driving scenario to ASAM OpenSCENARIO® file version 1.1 by using the
Driving Scenario Designer app or the export function of the drivingScenario object.

Use the OpenSCENARIOVersion name-value argument of the export function to specify the version
for the file. For example:

filename = "newfile.xosc";
export(scenario,"OpenSCENARIO",filename,OpenSCENARIOVersion=1.1);

R2022a

3-4

https://www.mathworks.com/help/releases/R2022a/driving/ref/ultrasonicdetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/birdseyeplot.rangedetectionplotter.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/birdseyeplot.plotrangedetection.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/birdseyescope-app.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingradardatagenerator-system-object.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingradardatagenerator.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingradardatagenerator.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.export.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.export.html

Sharp Curvature Roads: Create or import roads with sharp curvature
You can now create or import roads with sharp curvature using the road function or roadNetwork
function, respectively, of the drivingScenario object. Previously, creating or importing sharp
curvature roads was not supported.

You can also interactively create or import roads with sharp curvature using the Driving Scenario
Designer app.

This table shows an example of enhanced ASAM OpenDRIVE road network imported using R2022a
compared to the road network imported using R2021b.

R2021b R2022a

Road Group Enhancements: Import heading angle information of road
groups into the Driving Scenario Designer app
When you import a drivingScenario object into the Driving Scenario Designer app, you can now
import heading angles of road segments stored within the RoadGroup object. Previously, heading
angle information of road groups was not imported into the app. In addition, you can also export the
heading angle information of road groups to a MATLAB function from the app. This heading angle
information enables you to accurately match the shapes of road groups across programmatic and
interactive workflows as shown in this figure.

 Cuboid Scenario Simulation

3-5

https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/driving.scenario.roadgroup.html

Scenario created using
drivingScenario object

Scenario imported in the app
using R2021b

Scenario imported in the app
using R2022a

Ego Localization Example: Correct ego vehicle localization using
recorded sensor data
The Improve Ego Vehicle Localization example shows how to correct ego vehicle localization and
generate an accurate ego trajectory by fusing global positioning system (GPS) and inertial
measurement unit (IMU) sensor data. The example also shows how to compose a virtual driving
scenario using a localized ego trajectory and OpenStreetMap® road network.

R2022a

3-6

https://www.mathworks.com/help/releases/R2022a/driving/ug/ego-vehicle-localization-improvement.html

Unreal Engine Scenario Simulation

Simulation 3D Lidar Reflectivity: Model surface reflections in Unreal
Engine environment
In the Simulation 3D Lidar block, use the Reflectivity output port to output the reflectivity of surface
materials in the Unreal Engine environment.

OpenCV Radial Distortion in Simulation 3D Camera Block: Simulate
cameras with OpenCV supported radial distortion model in Unreal
Engine Environment
In the Simulation 3D Camera block, you can now use the OpenCV six-coefficient formula for modeling
radial distortion. Specify the formula to the Radial distortion coefficients parameter. This is in
addition to the two-coefficient and three-coefficient models already supported by camera calibration
tools in Computer Vision Toolbox™. For more information on calibrating a camera using the six-
coefficient formula, see Camera Calibration and 3D Reconstruction in the OpenCV documentation.

Simulation 3D Camera Performance Improvements: Run cameras at
improved speeds during Unreal Engine simulation
The Simulation 3D Camera block now has improved simulation performance and runs at higher frame
rates. This table shows the increase in frames per second (FPS) for each camera in an Unreal Engine
simulation.

Number of Cameras
in Simulation

Frame Rate per
Camera (R2021b)

Frame Rate per
Camera (R2022a)

Percent Improvement
per Camera

1 75.85 FPS 88.45 FPS 16.6%
4 30.51 FPS 32.80 FPS 7.5%

These simulations were timed on a Windows 10, Intel® Xeon® W-2133 CPU @ 3.60 GHz, with 64 GB
of RAM and a GPU with 8 GB of on-board RAM.

These improvements enable you to run cameras at real-time speeds, provided that your system meets
the requirements specified by the Unreal Engine Simulation Environment Requirements and
Limitations.

Simulation 3D Environment Upgrade: Run 3D simulations using Unreal
Engine 4.26
The 3D visualization engine that comes installed with Automated Driving Toolbox has been updated to
Unreal Engine 4.26. Previously, the toolbox used Unreal Engine 4.25.

For information about using Unreal Engine to create custom scenes, see Customize Unreal Engine
Scenes for Automated Driving and Unreal Engine Simulation Environment Requirements and
Limitations.

 Unreal Engine Scenario Simulation

3-7

https://www.mathworks.com/help/releases/R2022a/driving/ref/simulation3dlidar.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/simulation3dcamera.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/simulation3dcamera.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/3d-visualization-engine-requirements.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/3d-visualization-engine-requirements.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/customize-3d-scenes-for-automated-driving.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/customize-3d-scenes-for-automated-driving.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/3d-visualization-engine-requirements.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/3d-visualization-engine-requirements.html

Compatibility Considerations
If your Simulink model uses an Unreal Engine executable or project developed using a prior release
of the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package, the
simulation may return an error. To migrate the project so that it is compatible with the R2022a
version of the support package, see Migrate Projects Developed Using Prior Support Packages.

Functionality being removed or changed
Updated Large Parking Lot scene
Behavior change

Starting from R2022a, the Large Parking Lot scene in the Unreal Engine 3D environment is rendered
using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles,
are moved from their pre-R2022a locations.

R2022a

3-8

https://www.mathworks.com/help/releases/R2022a/driving/ug/migrate-projects-developed-using-prior-support-packages.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/largeparkinglot.html

RoadRunner Scenario Simulation

Simulate RoadRunner scenarios with MATLAB and Simulink
RoadRunner is an editor that enables you to design 3D scenes for simulating and testing automated
driving systems. In R2022a, Automated Driving Toolbox provides a cosimulation framework for
simulating scenarios in RoadRunner with actors modeled in MATLAB and Simulink.

These are the steps of the simulation workflow:

• Author RoadRunner actors in MATLAB and Simulink. For more information, see Simulate
RoadRunner Scenarios with Actors Modeled in Simulink and Simulate RoadRunner Scenarios with
Actors Modeled in MATLAB.

• Associate actor behavior in RoadRunner. For more information, see Overview of Simulating
RoadRunner Scenarios with MATLAB and Simulink.

• Optionally, publish an actor behavior. For more information, see Publish Actor Behavior as Proto
File or Package.

• Tune the parameters defined in MATLAB or Simulink for RoadRunner simulations. For more
information, see Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink.

• Simulate a scenario using the RoadRunner user interface or control simulations programmatically
from MATLAB. For more information, see Overview of Simulating RoadRunner Scenarios with
MATLAB and Simulink.

• Inspect simulation results using data logging. For more information, see Overview of Simulating
RoadRunner Scenarios with MATLAB and Simulink.

Use these new objects to view and control the attributes of a RoadRunner scenario simulation and its
associated actors through MATLAB:

• Simulink.ScenarioSimulation — Create, access, and control scenario simulation
• Simulink.ActorSimulation — Access and modify runtime specifications of actor

 RoadRunner Scenario Simulation

3-9

https://www.mathworks.com/help/releases/R2022a/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-matlab.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/co-simulate-roadrunner-with-agents-modeled-in-matlab.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/overview-of-co-simulating-roadrunner-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/overview-of-co-simulating-roadrunner-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/publish-actor-behavior-as-a-proto-file-or-a-package.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/publish-actor-behavior-as-a-proto-file-or-a-package.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/overview-of-co-simulating-roadrunner-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/overview-of-co-simulating-roadrunner-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/overview-of-co-simulating-roadrunner-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/overview-of-co-simulating-roadrunner-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/overview-of-co-simulating-roadrunner-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/simulink.scenariosimulation.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/simulink.actorsimulation.html

• Simulink.ActorModel — View static specifications of actor
• Simulink.ScenarioLog — View diagnostic information of scenario simulation

You can use these objects and functions in MATLAB System Objects to create custom RoadRunner
actor behaviors.

Use these new blocks to create a model to define custom behaviors for your actors in RoadRunner
using Simulink:

• RoadRunner Scenario — Establish the model interface with a scenario
• RoadRunner Scenario Reader — Read the world state, including actor pose, velocity, color, and

supervisory actions
• RoadRunner Scenario Writer — Write an actor state to the scenario and report errors and

warnings

Explore these examples that demonstrate speed action follower, trajectory follower, and highway lane
change planner workflows with RoadRunner Scenario cosimulation:

• The Speed Action Follower with RoadRunner Scenario example shows how to design speed action
following behavior using MATLAB. You assign this behavior to the ego vehicle in the RoadRunner
scenario and control the speed of the ego vehicle to avoid collision with a lead car. The example
also shows how to visualize RoadRunner Scenario simulation data using MATLAB.

• The Trajectory Follower with RoadRunner Scenario example shows how to control the motion of
the ego vehicle in RoadRunner Scenario using Simulink to follow the specified trajectory. The
example uses the Stanley controller and 3DOF vehicle dynamics to control the motion of the ego
vehicle. The example also shows how to visualize RoadRunner Scenario simulation data using
MATLAB.

• The Highway Lane Change Planner with RoadRunner Scenario example shows how to simulate a
lane change behavior for the ego vehicle in a RoadRunner scenario by using Simulink. The
example uses a highway lane change planner Simulink model that finds an optimal collision-free
trajectory to navigate the ego vehicle.

These examples require licenses for RoadRunner and RoadRunner Scenario.

MATLAB Functions for RoadRunner Scenes and Scenarios: Import and
export RoadRunner scenes and scenarios programmatically
Using the roadrunner object and its associated MATLAB functions, you can control the RoadRunner
application programmatically. Common programmatic tasks that you can perform include:

• Open and close the RoadRunner application.
• Open, close, and save scenes and projects.
• Import and export scenes.

These MATLAB functions require an Automated Driving Toolbox license. For details on using these
functions, see MATLAB Functions for Scenes (RoadRunner) and MATLAB Functions for Scenarios
(RoadRunner Scenario).

R2022a

3-10

https://www.mathworks.com/help/releases/R2022a/driving/ref/simulink.actormodel.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/simulink.scenariolog.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/roadrunnerscenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/roadrunnerscenarioreader.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/roadrunnerscenariowriter.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/speed-action-follower-with-roadrunner-scenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/trajectory-follower-with-roadrunner-scenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/highway-lane-change-planner-with-roadrunner-scenario.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/roadrunner.html
https://www.mathworks.com/help/releases/R2022a/roadrunner/matlab-functions-for-scenes.html
https://www.mathworks.com/help/releases/R2022a/roadrunner-scenario/matlab-functions-for-scenarios.html

Detection and Tracking
YOLO v4 Object Detection: Detect objects in monocular camera
images using you only look once version 4 (YOLO v4) deep learning
network
The configureDetectorMonoCamera function can now configure a monocular camera to use the
YOLO v4 object detector, returning an yolov4ObjectDetectorMonoCamera object.

Bird's-Eye View Example Update: Generate code for algorithm to
create 360° bird's-eye-view image around a vehicle
The Create 360° Bird's-Eye-View Image Around a Vehicle example now shows how to generate code
for algorithm to create 360° bird's-eye-view image around a vehicle for use in a surround-view
monitoring system. It also shows how to verify the generated code before deployment.

PIL Verification of JPDA Tracker Example: Generate embedded code
and perform processor-in-loop (PIL) verification of JPDA tracker in
highway scenarios
The Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications example shows
how to generate embedded code for a joint probabilistic data association (JPDA) tracker configured to
process detections from a camera and radar sensor mounted on the front of the ego vehicle in
highway scenarios. It also shows how to verify the generated code using processor-in-loop (PIL)
simulation on an STM32 Nucleo board using simulated detections.

Functionality being removed or changed
Bug fixes and behavior changes of trackingKF object
Behavior change

As of R2022a the trackingKF filter object has these behavior changes:

• If you set the MotionModel property to a predefined state transition model, such as "1D
Constant Velocity", you can no longer specify the control model for the filter. To use a control
model, specify the MotionModel property as "Custom".

• You must now specify the control model of the filter when creating the filter. You can no longer
specify it after creating the filter.

• You can now specify the process noise for a trackingKF object using the ProcessNoise
property for a predefined motion model. The dimension of the process noise matrix set through
the ProcessNoise property now differentiates between a predefined motion model and a
customized motion model. Specifically,

• If the specified motion model is a predefined motion model, specify
the ProcessNoise property as a D-by-D matrix, where D is the dimension of the motion. For
example, D = 2 for "2D Constant Velocity" motion model.

• If the specified motion model is a customized motion model, specify
the ProcessNoise property as an N-by-N matrix, where N is the dimension of the state. For
example, N = 4 if you customize a 2-D motion model in which the state is (x, vx, y, vy).

 Detection and Tracking

3-11

https://www.mathworks.com/help/releases/R2022a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/yolov4objectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/create-360-birds-eye-view-image.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/processor-in-the-loop-verification-of-jpda-tracker-for-automotive-applications.html
https://www.mathworks.com/help/releases/R2022a/driving/ref/trackingkf.html

• The orientation of the filter state now matches the state vector that you specify when creating the
filter. For example, if you set the initial state in the filter as a row vector, the filter displays the
filter state as a row vector. Previously, the filter displayed the filter state as a column vector
regardless of initial state.

• You can generate efficient C/C++ code without dynamic memory allocation for trackingKF.

R2022a

3-12

Localization and Mapping

Parking Spot Detection Example: Detect empty parking spots in a
parking lot using semantic segmentation
The Perception-Based Parking Spot Detection Using Unreal Engine Simulation example shows how to
detect lane markings and obstacles in a parking lot using semantically segmented camera images,
incrementally update detections in the bird’s-eye view, reconstruct parking spots from lane markings,
and build a map of parking spots for decision making in an Unreal Engine simulation environment.

LOAM Example: Build map and localize using Lidar Odometry and
Mapping (LOAM)
The Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation example
shows how to build a map with lidar data and localize the position of a vehicle on the map using Lidar
Odometry and Mapping (LOAM), an algorithm that uses edge and surface points in the point cloud for
registration and mapping.

Point Cloud Localization Example Update: Localize with a prebuilt map
using NDT algorithm
The Lidar Localization with Unreal Engine Simulation example now shows how to localize the
position of a vehicle on a prebuilt map using the Normal Distributions Transform (NDT) algorithm.

Visual SLAM Example Update: Reconstruct a parking lot from stereo
images using visual SLAM
The Develop Visual SLAM Algorithm Using Unreal Engine Simulation example now shows how to
perform dense reconstruction using stereo images of a parking lot scene in an Unreal Engine
simulation environment.

 Localization and Mapping

3-13

https://www.mathworks.com/help/releases/R2022a/driving/ug/perception-based-parking-spot-detection-using-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/build-map-with-loam-using-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/lidar-localization-with-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/develop-visual-slam-algorithm-using-unreal-engine-simulation.html

Applications

Intersection Navigation Examples: Use V2V and V2X communication
technologies to build applications for safe navigation through
intersections
The Intersection Movement Assist Using Vehicle-to-Vehicle Communication example shows how to
design and test an intersection movement assist (IMA) application by modeling vehicle-to-vehicle
(V2V) communication. In this example, you also study the effect of channel impairments on the IMA
application.

The Traffic Light Negotiation Using Vehicle-to-Everything Communication example shows how to
design and test decision logic using vehicle-to-everything (V2X) communication to negotiate a traffic
light to prevent collisions at intersections. This example uses the vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) modes of V2X communication.

Autonomous Emergency Braking Examples: Integrate high fidelity
vehicle dynamics model with autonomous emergency braking (AEB)
system and automate testing of AEB system
The Autonomous Emergency Braking with Vehicle Variants example enables you to integrate either
3DOF or 14DOF vehicle models with AEB system in a closed-loop environment. Using this example,
you can study interactions between an AEB controller and vehicle dynamics model, and analyze the
impact of high-fidelity vehicle dynamics on AEB applications.

The Autonomous Emergency Braking with Sensor Fusion example has been updated to calculate the
steering angle required for an ego vehicle to follow the reference path. This capability enables you to
test and validate an AEB system using complex Euro NCAP test scenarios that contain intersections.

The Automate Testing for Autonomous Emergency Braking example shows how to automate testing of
the components of an AEB system and verify the generated code using Simulink Test software. You
can automate testing of the sensor fusion and tracking, decision logic, and controller components.

Real-Time Testing Example: Deploy and test forward vehicle sensor
fusion component in real-time
The Automate Real-Time Testing for Forward Vehicle Sensor Fusion example shows how to deploy a
forward vehicle sensor fusion component of a highway lane following system to a Speedgoat® real-
time machine and automate the regression testing of the deployed application.

Highway Lane Change Example Update: Integrate surround vehicle
sensor fusion with highway lane change system
The Highway Lane Change example now integrates a surround vehicle sensor fusion component that
provides a 360-degree view for detecting target vehicles surrounding the ego vehicle, enabling it to
perform a lane change maneuver. Before R2022a, the example instead used the ground truth
information of target vehicles to perform a lane change maneuver for the ego vehicle, as shown in the
Highway Lane Change Planner and Controller example.

R2022a

3-14

https://www.mathworks.com/help/releases/R2022a/driving/ug/intersection-movement-assist-using-v2v.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/traffic-light-negotiation-using-v2x.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/autonomous-emergency-braking-with-vehicle-variants.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/automate-testing-for-autonomous-emergency-braking.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/automate-real-time-testing-for-forward-vehicle-sensor-fusion.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/highway-lane-change.html
https://www.mathworks.com/help/releases/R2022a/driving/ug/highway-lane-change-planner-and-controller.html

R2021b

Version: 3.4

New Features

Bug Fixes

Compatibility Considerations

4

Ground Truth Labeling

Labeler Enhancements: Edit cuboid ROI labels more easily in top, side,
and front 2-D view projections, segment ground from lidar data using
SMRF algorithm
The following table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler
• Lidar Labeler (Lidar Toolbox)

Enhancement Image
Labeler

Video
Labeler

Ground
Truth
Labeler

Lidar
Labeler

Show or hide labels and sublabels of
type Rectangle, Line, Polygon, and
Projected cuboid in a labeled
image or video.

Yes Yes Yes No

Show or hide labels of type Cuboid in
a labeled point cloud or point cloud
sequence.

No No Yes Yes

View and edit cuboid ROI labels using
top, side, and front 2-D view
projections by selecting Projected
View.

No No Yes Yes

Segment ground from lidar data using
the simple morphological filter (SMRF)
algorithm. For more information about
the algorithm parameters, see the
segmentGroundSMRF (Lidar Toolbox)
function.

No No Yes (only with
Lidar
Toolbox™
license)

Yes

Extract video scenes and
corresponding labels from a
groundTruth or
groundTruthMultisignal object.

No Yes Yes No

Digital Imaging and Communication in
Medicine (DICOM) image format.

Yes No No No

Velodyne Lidar Sources: Load data from Velodyne VLS-128 lidar device
into Ground Truth Labeler app
Load data captured using the Velodyne® VLS-128 lidar device into the Ground Truth Labeler app.
Use the vision.labeler.loading.VelodyneLidarSource class to load signals from the packet

R2021b

4-2

https://www.mathworks.com/help/releases/R2021b/vision/ref/imagelabeler-app.html
https://www.mathworks.com/help/releases/R2021b/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2021b/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/releases/R2021b/lidar/ref/segmentgroundsmrf.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/vision.labeler.loading.velodynelidarsource-class.html

capture (PCAP) file data source by setting the DeviceModel field of the SourceParams property to
"VLS-128".

 Ground Truth Labeling

4-3

Cuboid Scenario Simulation

Parking Lots: Add parking lots to driving scenarios programmatically
In drivingScenario objects, use the parkingLot function to create parking lot environments in
which to test your automated driving algorithms. You can choose from a variety of predefined parking
lot layouts or design a custom layout.

To customize the design of the parking spaces, create parkingSpace objects and visualize them by
using the plot function.

To add parking spaces along the edges of parking lots or to add parking grids at specific positions or
orientations, use the insertParkingSpaces function.

You can also visualize parking lanes on a bird's-eye plot. First, create a lane marking plotter. Then,
obtain the parking lane vertices by using the parkingLaneMarkingVertices function and plot the
lanes by using the plotParkingLaneMarking function.

R2021b

4-4

https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.parkinglot.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/parkingspace.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/parkingspace.plot.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.insertparkingspaces.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.parkinglanemarkingvertices.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/birdseyeplot.plotparkinglanemarking.html

For examples that use scenario and sensor simulation in parking lots, see Simulate Vehicle Parking
Maneuver in Driving Scenario and Visualize Automated Parking Valet Using Cuboid Simulation.

Note The creation of parking lots using the Driving Scenario Designer app is not supported. The
import of parking lots into the app is also not supported. For more details on parking lot limitations,
see the parkingLot reference page.

ASAM OpenDRIVE Import Enhancements: Import a road network using
OpenDRIVE file version V1.5 and ASAM OpenDRIVE V1.6
You can now import a road network from OpenDRIVE® file version V1.5 and ASAM OpenDRIVE V1.6
into a driving scenario by using the roadNetwork function of the drivingScenario object, or by
using the Driving Scenario Designer app. In addition, you can now add roads and export a MATLAB
function after importing the road network into the app.

ASAM OpenDRIVE Export Enhancements: Export a road network to
OpenDRIVE file version V1.5 and ASAM OpenDRIVE V1.6
You can now export a driving scenario to OpenDRIVE file version V1.5 and ASAM OpenDRIVE V1.6 by
using the Driving Scenario Designer app or the export function of the drivingScenario object.

Use the OpenDRIVEVersion name-value argument of the export function to specify the version of
the file. You can also specify whether to export actors by using the ExportActors name-value
argument. For example:

filename = "newfile.xodr";
export(scenario,"OpenDRIVE",filename,OpenDRIVEVersion=1.6,ExportActors=false);

 Cuboid Scenario Simulation

4-5

https://www.mathworks.com/help/releases/R2021b/driving/ug/simulate-vehicle-parking-maneuver-in-driving-scenario.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/simulate-vehicle-parking-maneuver-in-driving-scenario.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/visualize-automated-parking-valet-using-cuboid-simulation.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.parkinglot.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.export.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.export.html

ASAM OpenSCENARIO Export Enhancements: Export the routes of
actors using instances of Trajectory element
When you export a driving scenario to an ASAM OpenSCENARIO file, the file now specifies the routes
of actors using instances of the Trajectory element. Previously, the routes of actors were exported
separately using a RouteCatalog file containing instances of the Route element.

Scenario Reader Block: Obtain position, velocity, orientation, and
acceleration information from Ego Vehicle State port
The Scenario Reader block now outputs ego vehicle state information that includes the position,
velocity and acceleration measurements of the ego vehicle in world coordinates. This information can
be used as ground truth data for simulating sensor models, such as an INS sensor. This output is
available only in open-loop workflows without ego vehicle pose input to the Scenario Reader block.

INS Block: Generate synthetic readings from an inertial navigation
and GPS sensor in driving scenarios in Simulink
Use the INS block to simulate an INS sensor in Simulink. Obtain the state of the ego vehicle from the
Ego Vehicle State output port of the Scenario Reader block. State information includes the position,
velocity, orientation, and acceleration of the vehicle. Pass this ego vehicle state information as ground
truth to the INS block, which then generates sensor readings at each simulation time step. For an
example, see Generate INS Measurements from Driving Scenario in Simulink.

You can now also export scenarios that model INS sensors modeled using the Driving Scenario
Designer app to Simulink. For more information, see Generate INS Sensor Measurements from
Interactive Driving Scenario.

Road Heading Angles: Create more precise roads using fewer road
centers
You can now specify heading angles at road centers to create roads. Specifying heading angles as a
constraint to road center points enables finer control over the shape and orientation of roads using
fewer road centers.

To programmatically add roads with heading angles to a drivingScenario object, use the Heading
name-value argument of the road function. Specify the heading value as a column vector of angles in
the range [–180, 180] degrees. For example:

road(scenario,roadCenters,Heading=[-90;-90;0;-90;-90]);

This figure shows two roads with the same road centers, but one has specified heading angle values
and the other does not.

R2021b

4-6

https://www.mathworks.com/help/releases/R2021b/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/ins.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/ins.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/generate-ins-measurements-from-driving-scenario-in-simulink.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/generate-ins-sensor-measurements-from-interactive-driving-scenario.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/generate-ins-sensor-measurements-from-interactive-driving-scenario.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenario.road.html

You can also use the Driving Scenario Designer app to specify road heading angles. Use the
heading column in the Road Centers table to specify the heading angles at each road center.

Lane Generation Example: Add lane information to map imported road
network
The Generate Lane Information from Recorded Data example shows how to generate lane information
using recorded data from a camera and a GPS sensor. Use this example to add lane information to a
road network imported from SD map data.

 Cuboid Scenario Simulation

4-7

https://www.mathworks.com/help/releases/R2021b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/generate-lane-information-from-recorded-data.html

Scenario Generation Examples: Generate scenario from recorded
sensor data and scenario variants from seed scenario
The Generate Scenario from Recorded GPS and Lidar Data example shows how to automatically
generate a driving scenario from the data recorded by global positioning systems (GPS) and lidar
sensors. You can use the generated scenario as input data to model and simulate an automated
driving system.

The Automatic Scenario Variant Generation for Testing AEB Systems example shows how to
automatically generate variants of a seed scenario in which two actors collide. You can generate
random variants of a collision scenario and use them to design and validate an automated emergency
braking (AEB) system.

R2021b

4-8

https://www.mathworks.com/help/releases/R2021b/driving/ug/generate-scenario-from-recorded-gps-and-lidar-data.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/automatic-scenario-variant-generation-for-testing-aeb-systems.html

Unreal Engine Scenario Simulation

Unreal Engine Environment Upgrade: Run 3D simulations using Unreal
Engine, Version 4.25
The 3D simulation engine that comes installed with Automated Driving Toolbox has been updated to
Unreal Engine, Version 4.25. Previously, the toolbox used Unreal Engine, Version 4.23.

For information about using Unreal Engine to create custom scenes, see Customize Unreal Engine
Scenes for Automated Driving.

Compatibility Considerations
If your Simulink model uses an Unreal Engine executable or project developed using a prior release
of the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package, the
simulation might produce an error. To migrate the project so that it is compatible with the R2021b
version of the support package, see Migrate Projects Developed Using Prior Support Packages.

Position Adjustments of Unreal Engine Cameras: Update relative
translation and rotation of camera sensors during simulation
In the Simulation 3D Camera and Simulation 3D Fisheye Camera blocks, use the Translation and
Rotation input ports to update the position of the cameras relative to their mounting positions
during simulation. You can use these position adjustments to better model actuator dynamics,
isolation mounting, and calibration workflows.

Previously, you could set only constant relative positions by using the Relative translation [X, Y, Z]
(m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters. Now, by selecting Input to enable
the corresponding ports, the parameters specify the initial position and the ports specify the position
during simulation.

Unreal Engine Environment Performance Improvements: Run 3D
simulations faster than real-time
Simulink co-simulations with Unreal Engine can now run faster than real-time. Previously, the Unreal
Engine frame rate was limited by the inverse of the simulation sample rate. If you want to slow down
a 3D simulation to investigate system behavior, you can still use simulation pacing.

Use the Simulation 3D Scene Configuration block parameter Sample time to control simulation time.
For example, if Sample time is 1/30, then the visualization engine solver tries to achieve a minimum
frame rate of 30 frames per second (FPS). However, the real-time graphics frame rate is often lower
due to factors such as graphics card performance and model complexity. With sufficient graphics card
performance and low model complexity, the frame rate could be greater than 30 FPS, not limited to
30 FPS as in previous releases.

 Unreal Engine Scenario Simulation

4-9

https://www.mathworks.com/help/releases/R2021b/driving/ug/customize-3d-scenes-for-automated-driving.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/customize-3d-scenes-for-automated-driving.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/migrate-projects-developed-using-prior-support-packages.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/simulation3dcamera.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/simulation3dfisheyecamera.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/simulation3dsceneconfiguration.html

Unreal Engine Visualization Example: Visualize logged data for post-
simulation analysis
The Visualize Logged Data from Unreal Engine Simulation example shows how to customize the
visualization of logged sensor and simulation data using the Simulation Data Inspector. This example
enables you to analyze and debug automated driving test cases after running the simulation.

R2021b

4-10

https://www.mathworks.com/help/releases/R2021b/driving/ug/visualize-logged-data-from-unreal-engine-simulation.html

Detection and Tracking
Perturbations: Perturb object properties using truncated normal
distribution
You can now define the perturbation distribution of a property as a truncated normal distribution
using the perturbations (Sensor Fusion and Tracking Toolbox) function. With offset values
bounded by a finite interval, the truncated normal distribution is suitable for perturbing a property
whose valid values are confined in a finite interval.

Code Generation: Generate more memory-efficient C/C++ code from
trackers and tracking filters
These objects and Simulink blocks now support strict single-precision and static memory allocation
code generation:

• trackingEKF
• trackingUKF
• Multi-Object Tracker

See the Extended Capabilities section on each object or block reference page for its code
generation limitations.

Radar and Tracking Examples: Fuse radar and camera tracks, track
using event-based sensor fusion and retrodiction and track in
scenarios with multipath radar reflections in Simulink
The Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink example
shows how to fuse radar and camera measurements to track highway vehicles with multiple extended
object tracking techniques and evaluate their tracking performance in Simulink. This example
requires the Sensor Fusion and Tracking Toolbox™ software.

The Event-Based Sensor Fusion and Tracking with Retrodiction example shows how to track vehicles
using event-based sensor fusion of simulated radar and camera measurements in Simulink. This
example requires the Sensor Fusion and Tracking Toolbox software.

The Extended Target Tracking with Multipath Radar Reflections in Simulink example shows how to
model and mitigate multipath radar reflections during highway vehicle tracking in Simulink. This
example requires the Sensor Fusion and Tracking Toolbox. It closely follows the Highway Vehicle
Tracking with Multipath Radar Reflections (Radar Toolbox) example.

Track moving vehicles with multiple lidar sensors using a grid-based
tracker in Simulink
The Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink example shows
how to track moving vehicles in urban environments with measurements from multiple lidar sensors
using a grid-based tracker in Simulink. This example requires the Sensor Fusion and Tracking
Toolbox software. It closely follows the Grid-Based Tracking in Urban Environments Using Multiple
Lidars example.

 Detection and Tracking

4-11

https://www.mathworks.com/help/releases/R2021b/fusion/ref/inssensor.perturbations.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/trackingekf.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/trackingukf.html
https://www.mathworks.com/help/releases/R2021b/driving/ref/multiobjecttracker.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/extended-object-tracking-of-highway-vehicles-with-radar-and-camera-in-simulink.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/event-based-sensor-fusion-and-tracking-with-retrodiction.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/extended-highway-target-tracking-with-multipath-radar-reflections-in-simulink.html
https://www.mathworks.com/help/releases/R2021b/radar/ug/radar-multipath-detections.html
https://www.mathworks.com/help/releases/R2021b/radar/ug/radar-multipath-detections.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/grid-based-tracking-in-urban-environemnts-using-multiple-lidars-in-simulink.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/grid-based-tracking-in-urban-environments-using-multiple-lidars.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/grid-based-tracking-in-urban-environments-using-multiple-lidars.html

Perform dynamic replanning on highways using tracking in MATLAB
The Object Tracking and Motion Planning Using Frenet Reference Path example shows how to
perform dynamic replanning on highways using a Frenet reference path and a joint probabilistic data
association (JPDA) tracker in MATLAB. This example requires the Sensor Fusion and Tracking
Toolbox and Navigation Toolbox™ software. It is an extension of the Highway Trajectory Planning
Using Frenet Reference Path example.

R2021b

4-12

https://www.mathworks.com/help/releases/R2021b/driving/ug/object-tracking-and-motion-planning-using-frenet-reference-paths.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/highway-trajectory-planning-using-frenet-reference-path.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/highway-trajectory-planning-using-frenet-reference-path.html

Localization and Mapping

Visual Localization Example: Develop and evaluate a visual
localization algorithm in a parking lot scenario
The Visual Localization in a Parking Lot example shows how to develop a visual localization system
using synthetic image data from the Unreal Engine simulation environment.

Segment Matching Example: Build Map and Localize Using Segment
Matching
The Build Map and Localize Using Segment Matching example shows how to build a map with lidar
data and localize the position of a vehicle on the map using SegMatch, a place recognition algorithm
based on segment matching.

 Localization and Mapping

4-13

https://www.mathworks.com/help/releases/R2021b/driving/ug/visual-localization-in-a-parking-lot.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/build-map-and-localize-using-segment-matching.html

Applications

Message-Based Communication: Establish message-based
communication between model components
The Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion example
shows how to establish message-based communication between the controller and sensor fusion
components of a highway lane following system. This workflow enables you to integrate system
components in a distributed architecture.

Real-Time Testing: Deploy and test highway lane following controller
in real-time
The Automate Real-Time Testing for Highway Lane Following Controller example shows how to
configure a hardware setup to deploy a lane following controller to a Speedgoat real-time machine.
The example also shows how to automate the regression testing of the deployed application.

Automate Testing: Automate testing of components of lane following
and lane changing systems
These new examples show how to automate testing and verify generated code for different
components of highway lane following and highway lane change systems.

• Automate Testing for Vision Vehicle Detector
• Automate Testing for Forward Vehicle Sensor Fusion
• Automate Testing for Highway Lane Change
• Automate Testing for Highway Lane Following Controller

R2021b

4-14

https://www.mathworks.com/help/releases/R2021b/driving/ug/generate-message-interfaces-for-lane-following-controls-and-sensor-fusion.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/automate-real-time-testing-for-highway-lane-following-controller.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/automate-testing-for-vision-vehicle-detector.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/automate-testing-for-forward-vehicle-sensor-fusion.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/automate-testing-for-highway-lane-change.html
https://www.mathworks.com/help/releases/R2021b/driving/ug/automate-testing-for-highway-lane-following-controller.html

R2021a

Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

5

Ground Truth Labeling

Labeler Enhancements: Label object instances for semantic
segmentation, automate labeling of multiple signals simultaneously,
and additional features
The following table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler
• Lidar Labeler (Lidar Toolbox)

Enhancement Image
Labeler

Video
Labeler

Ground
Truth
Labeler

Lidar
Labeler

Label distinct instances of objects
belonging to the same class using a
polygon label. For more details, see
Label Objects Using Polygons.

Yes Yes Yes No

Use superpixel automation to quickly
pixel label regions of an image with
similar pixel values. For more details,
see Label Pixels Using Superpixel Tool.

Yes Yes Yes No

Automate the labeling of multiple
signals together within a single
automation run. For an example, see
Automate Ground Truth Labeling
Across Multiple Signals.

No No Yes No

Label very large images (with at least
one dimension <8K) that previously
could not be loaded into memory. Load
these images as blocked images. For
more details, see Label Large Images
in Image Labeler.

Yes No No No

Use a custom reader function to import
any point cloud. For more details, see
Use Custom Point Cloud Source Reader
for Labeling (Lidar Toolbox).

No No No Yes

Define and view a region of interest
(ROI) in the point cloud and label
objects in it. For more details, see ROI
View (Lidar Toolbox).

No No No Yes

Control the point dimension of the
point cloud.

No No No Yes

R2021a

5-2

https://www.mathworks.com/help/releases/R2021a/vision/ref/imagelabeler-app.html
https://www.mathworks.com/help/releases/R2021a/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2021a/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/releases/R2021a/vision/ug/label-objects-using-polygons.html
https://www.mathworks.com/help/releases/R2021a/vision/ug/label-pixels-for-semantic-segmentation.html#mw_bf7a81c1-f316-48fa-8a0a-ead6078771f2
https://www.mathworks.com/help/releases/R2021a/driving/ug/automate-ground-truth-labeling-across-multiple-signals.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/automate-ground-truth-labeling-across-multiple-signals.html
https://www.mathworks.com/help/releases/R2021a/vision/ug/label-blocked-image-using-the-image-labeler.html
https://www.mathworks.com/help/releases/R2021a/vision/ug/label-blocked-image-using-the-image-labeler.html
https://www.mathworks.com/help/releases/R2021a/lidar/ug/use-custom-source-reader-for-labeling.html
https://www.mathworks.com/help/releases/R2021a/lidar/ug/use-custom-source-reader-for-labeling.html
https://www.mathworks.com/help/releases/R2021a/lidar/ug/lidar-labeler-get-started.html#mw_f13a20ad-2392-40bc-afd6-a4abd4a4bb3e
https://www.mathworks.com/help/releases/R2021a/lidar/ug/lidar-labeler-get-started.html#mw_f13a20ad-2392-40bc-afd6-a4abd4a4bb3e

File I/O

Ibeo File Reader: Read sensor data from Ibeo data container (IDC)
files
Ibeo Automotive® Systems uses IDC files to record sensor messages from camera, lidar, GPS, and
other sensors. Use the ibeoFileReader object to read message headers and inspect the contents of
an IDC file. To select the messages of a specific sensor from this file, use the select function. You
can then use the readMessages or readNextMessage function to read the messages contained in
the file, and use these messages in automated driving workflows. For example, you can visualize
image, point cloud, and object detection data, or use vehicle state data to specify vehicles in a driving
scenario.

The reading of lidar data requires Lidar Toolbox.

 File I/O

5-3

https://www.mathworks.com/help/releases/R2021a/driving/ref/ibeofilereader.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/ibeofilereader.select.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/ibeomessagereader.readmessages.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/ibeomessagereader.readnextmessage.html

Cuboid Scenario Simulation
ASAM OpenSCENARIO Export: Share a driving scenario using the
ASAM OpenSCENARIO 1.0 format
Export a driving scenario to the ASAM OpenSCENARIO format from a drivingScenario object or
the Driving Scenario Designer app.

• To programmatically export a driving scenario from a drivingScenario object to the ASAM
OpenSCENARIO format, use the 'OpenSCENARIO' argument of the export function and a file
name with the .xosc extension. For example:

filename = 'newfile.xosc';
export(scenario,'OpenSCENARIO',filename)

• To interactively export a driving scenario from the Driving Scenario Designer app to the ASAM
OpenSCENARIO format, select Export > ASAM OpenSCENARIO File.

Driving Scenario Import: Create driving scenarios with road data
imported from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service
In the Driving Scenario Designer app, you can now generate a road network with data obtained
from the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service. For more details, see Import
Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario.

Programmatically import these roads into a drivingScenario object by using the
'ZenrinJapanMap' syntaxes in the roadNetwork function. Manage your credentials by using the
zenrinCredentials function.

Creating driving scenarios from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) requires Automated
Driving Toolbox Importer for Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Service.

R2021a

5-4

https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.export.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/import-zenrin-roads-into-driving-scenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/import-zenrin-roads-into-driving-scenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/zenrincredentials.html
https://www.mathworks.com/matlabcentral/fileexchange/88632-automated-driving-toolbox-importer-for-zenrin-japan-map-api-3-0-itsumo-navi-api-3-0-service
https://www.mathworks.com/matlabcentral/fileexchange/88632-automated-driving-toolbox-importer-for-zenrin-japan-map-api-3-0-itsumo-navi-api-3-0-service

To gain access to the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service and get the required
credentials (a client ID and secret key), you must enter into a separate agreement with ZENRIN
DataCom CO., LTD.

INS Sensor Model: Generate synthetic readings from an inertial
navigation and GPS sensor in driving scenarios
The insSensor System object models a device that fuses measurements from an inertial navigation
system (INS) and global navigation satellite system (GNSS) such as a GPS, and outputs the fused
measurements. To model an INS sensor in a programmatic driving scenario, follow these steps:

1 Create a driving scenario by using a drivingScenario object. Use the 'GeoReference'
name-value argument to specify the geographic origin of the route that correlates to the inertial
navigation and GPS sensor.

2 Add an ego vehicle and generate its trajectory by using the smoothTrajectory function. Unlike
the trajectory function, the smoothTrajectory function generates trajectories that avoid
discontinuities in acceleration and are more suitable for generating realistic INS readings.

3 Obtain the state of the ego vehicle by using the state function. State information includes the
position, velocity, orientation, and acceleration of the vehicle.

4 Create an insSensor object that is mounted to the ego vehicle, and simulate the driving
scenario. Specify the actor state as ground truth data for the sensor. The sensor uses this data to
generate sensor readings at each simulation time step.

To model an INS sensor in the Driving Scenario Designer app, see Generate INS Sensor
Measurements from Interactive Driving Scenario.

Barriers: Add guardrails and Jersey barriers to driving scenarios
You can now model guardrails and Jersey barriers in cuboid driving scenarios. You can add barriers
along an entire road edge or at a specific location within the scenario. This figure shows guardrail
barriers added to a scenario in the Driving Scenario Designer app.

 Cuboid Scenario Simulation

5-5

https://support.e-map.ne.jp/manuals/v3/
https://support.e-map.ne.jp/manuals/v3/
https://www.mathworks.com/help/releases/R2021a/driving/ref/inssensor-system-object.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.smoothtrajectory.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.state.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/inssensor-system-object.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/generate-ins-sensor-measurements-from-interactive-driving-scenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/generate-ins-sensor-measurements-from-interactive-driving-scenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html

To add barriers to programmatic driving scenarios, use the barrier function. Display barrier
outlines on bird's-eye plot using the plotBarrierOutline function.

In the Driving Scenario Designer app, two new actor classes, Jersey Barrier and Guardrail,
replace the existing Barrier class. The class editor features a new property called Actor Type.
This property allows users to set the actor type of a class to Vehicle, Other, or Barrier. The
property serves as a replacement for the Vehicle check box.

Compatibility Considerations
When you import existing scenario files with Barrier objects into Driving Scenario Designer, all
barriers are instantiated as Jersey Barrier objects by default. If you defined custom actor classes,
ensure that their class IDs are not 5 or 6, because actors with those class IDs are instantiated as
Jersey Barrier and Guardrail objects, respectively.

Radar Data Generator: Generate synthetic sensor detections and
tracks from a driving scenario
The drivingRadarDataGenerator System object is a statistical radar sensor model that generates
synthetic data from a driving scenario. This object provides the option to generate tracks, detections,
and clustered detections. To model this sensor in Simulink, use the Driving Radar Data Generator
block.

R2021a

5-6

https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.barrier.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/plotbarrieroutline.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingradardatagenerator-system-object.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingradardatagenerator.html

Compatibility Considerations
This System object and block replace the radarDetectionGenerator System object and Radar
Detection Generator block, unless you require C/C++ code generation. For more details, see
radarDetectionGenerator System object and Radar Detection Generator block are not recommended.

Driving Scenario Enhancements: Select multiple actors, align and
distribute actors, and additional features
Select Multiple Actors

In the Driving Scenario Designer app, hold Ctrl and click each actor you want to select.
Alternatively, hold Shift and click and drag to draw a box around the actors you want to select.

You can then uniformly move, align, or distribute the selected actors.

Align and Distribute Actors

In the Driving Scenario Designer app, to align selected actors along a specific actor dimension or
to distribute actors along a road, right-click one of the actors and select one of the options in the
Align Actors or Distribute Actors menus.

This figure shows actors aligned along their left side.

This figure shows actors distributed vertically along a road.

 Cuboid Scenario Simulation

5-7

https://www.mathworks.com/help/releases/R2021a/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/radardetectiongenerator.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/radardetectiongenerator.html
https://www.mathworks.com/help/releases/R2021a/driving/release-notes.html#mw_13eccd93-5471-443d-9c75-ab9570e36454
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html

Specify Maximum Number of Actors and Lane Boundaries in Scenario Reader Block

In the Scenario Reader block, you can now set the maximum number of actors and lane boundaries
that you can have in a scenario by using the Maximum number of actors and Maximum number
of lane boundaries parameters, respectively.

Set these maximum values when you want to reuse the same actor or lane boundary buses across
scenarios that have varying numbers of actors or lane boundaries. This situation is common when
outputting actors or lane boundaries from a referenced model.

Read Actor Profiles from Scenario Reader Block

In sensor blocks such as the Vision Detection Generator block, you can now read actor profile
information directly from the Scenario Reader block that is in your model. Actor profiles are the
physical and radar characteristics of the actors in the driving scenario. The sensor blocks use these
profiles to generate detections or other scenario data.

Previously, you had to either specify the actor profiles within each sensor block or specify a MATLAB
expression that obtained these profiles from the base workspace. Newly created sensor blocks now
read the actor profiles from the Scenario Reader block by default.

Spawn and Despawn Actors Multiple Times

You can now add or remove actors multiple times during a driving scenario. Specify multiple entry
times and exit times for an actor in the Driving Scenario Designer app, or by using the actor
function with a drivingScenario object.

R2021a

5-8

https://www.mathworks.com/help/releases/R2021a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html

Preview Actor Times of Arrival at Waypoints

The arrival time indicator in the Driving Scenario Designer app indicates the arrival time of an
actor at each waypoint prior to running the simulation. The app enables the arrival time indicator for
all actors when either the stop-and-go or the dynamic actor spawn and despawn feature is enabled
for at least one actor in the scenario. In the scenario canvas, point to any waypoint along the
trajectory of an actor to see the time of arrival of the actor at that waypoint.

HERE HD Live Map Scenario Enhancements: Generate road networks
with junctions and specifications for multiple lanes along a single road
In the Driving Scenario Designer app, road networks generated with data from the HERE HD Live
Map 2 web service now contain road junctions and specifications for multiple lanes along a single
road.

This table shows the enhanced road networks available in R2021a compared to the road networks
available in R2020b.

2 You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

 Cuboid Scenario Simulation

5-9

https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.here.com

R2021a R2020b

You can also import these road networks into a drivingScenario object by using the
'HEREHDLiveMap' syntaxes of the roadNetwork function.

Multiple Lane Specifications: Add or drop lanes along a road
Add or drop lanes along a road by defining multiple lane specifications. To define multiple lane
specifications programmatically use compositeLaneSpec object with the road function.

You can also define multiple lane specifications in the Driving Scenario Designer app using these
new parameters on the Roads tab:

R2021a

5-10

https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/compositelanespec.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html

• Number of Road Segments
• Segment Range
• Road Segment
• Segment Taper

Road Groups: Define road intersections
Use the roadGroup function to define intersections that connect two or more roads in a
drivingScenario object.

You can also import a road network containing intersections to the Driving Scenario Designer app.

 Cuboid Scenario Simulation

5-11

https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.roadgroup.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html

OpenDRIVE Export Enhancements: Export actors to OpenDRIVE format
You can now export the actors in a driving scenario and their properties to the OpenDRIVE file format
either by using the export function of the drivingScenario object or in the Driving Scenario
Designer app.

Functionality being removed or changed
radarDetectionGenerator System object and Radar Detection Generator block are not
recommended
Still runs

The radarDetectionGenerator System object and Radar Detection Generator block are not
recommended unless you require C/C++ code generation. Instead, use the
drivingRadarDataGenerator System object and Driving Radar Data Generator, respectively.
These new radar sensors provide additional properties for modeling radar sensors, including the
ability to generate tracks and clustered detections.

There are no current plans to remove the radarDetectionGenerator System object or Radar
Detection Generator block. MATLAB code and Simulink models that use these features will continue
to run. You can still import radarDetectionGenerator objects into the Driving Scenario
Designer app. However, the app updates the parameters of the imported sensor to reflect the
parameters of a drivingRadarDataGenerator object. In addition, when you export a scenario
containing a radarDetectionGenerator sensor to MATLAB code or to a Simulink model, the app
exports the sensor as a drivingRadarDataGenerator object or Driving Radar Data Generator
block, respectively.

Update Code

In MATLAB code, replace all instances of radarDetectionGenerator with
drivingRadarDataGenerator. In addition, update all radarDetectionGenerator properties

R2021a

5-12

https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.export.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/radardetectiongenerator.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingradardatagenerator-system-object.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingradardatagenerator.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/drivingscenariodesigner-app.html

with their equivalent drivingRadarDataGenerator properties, as shown in the table. The
properties not listed in the table are either specific only to drivingRadarDataGenerator or
identical in both objects.

radarDetectionGenerator Properties Equivalent drivingRadarDataGenerator
Properties

UpdateInterval UpdateRate
SensorLocation

Height

MountingLocation

Yaw

Pitch

Roll

MountingAccuracy

MaxRange RangeLimits
MaxNumDetectionsSource MaxNumReportsSource
MaxNumDetections MaxNumReports
ActorProfiles Profiles

This table shows sample code for creating a drivingRadarDataGenerator object instead of a
radarDetectionGenerator object.

Discouraged Usage Recommended Replacement
 radar = radarDetectionGenerator(...
 'SensorLocation',[-1 0], ...
 'Height',0.2, ...
 'Yaw',180, ...
 'Pitch',0, ...
 'Roll',0, ...
 'MaxRange',50);

 radar = drivingRadarDataGenerator(...
 'MountingLocation',[-1 0 0.2], ...
 'MountingAngles',[180 0 0], ...
 'RangeLimits',[0 50]);

To generate detections from actor poses at each simulation time step, replace the dets =
radarDetectionGenerator(targets,time) syntax with dets =
drivingRadarDataGenerator(targets,time).

Update Models

In Simulink models, replace all Radar Detection Generator blocks with Driving Radar Data Generator
blocks. In the Driving Radar Data Generator blocks, update the parameter values in the same way
you would update the drivingRadarDataGenerator property values described in the Update Code
section.

If your model contains a separate block that clusters detections, you can remove it because the
Driving Radar Data Generator block clusters detections by default.

For example, in this model, the Sensor Simulation subsystem outputs concatenated detections from
Radar Detection Generator blocks into a separate block that clusters the detections.

 Cuboid Scenario Simulation

5-13

https://www.mathworks.com/help/releases/R2021a/driving/release-notes.html#mw_ab60a024-9b22-45ac-91d3-cc47fb5e51a3

In this model, the Sensor Simulation subsystem outputs concatenated, clustered detections from
Driving Radar Data Generator blocks directly into the next part of the model pipeline.

R2021a

5-14

Unreal Engine Scenario Simulation

Unreal Engine Vehicle Enhancements: Import custom meshes and
control vehicle lights
You can configure the Simulation 3D Vehicle with Ground Following block to import custom meshes
and control vehicle lights.

To Action
Import
custom
meshes

1 Install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects
support package. See Install Support Package for Customizing Scenes.

2 On the block Parameters tab, set Type to Custom.
3 In the Path to custom mesh field, enter the path to the vehicle mesh in the

Unreal Engine project. For example, enter /MathWorksSimulation/Vehicles/
Muscle/Meshes/SK_MuscleCar.SK_MuscleCar.

To create a custom vehicle mesh, see Prepare Custom Vehicle Mesh for the Unreal
Editor.

4 Use the vehicle dimensions in the custom mesh to enter the dimensions in the
corresponding block parameter fields.

Control
vehicle lights

1 Install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects
support package. See Install Support Package for Customizing Scenes.

2 On the block Light Controls tab, select Enable light controls.
3 Use the enabled parameters to specify the vehicle lights for:

• Headlights
• Brake lights
• Reverse lights
• Turn signal lights

4 Connect Boolean light control signals to the Signal lights input port.

Unreal Engine Scene Environment: Control weather and sun position
Use the Simulation 3D Scene Configuration block to control scene weather and sun position. Options
allow you to create realistic environments when you run maneuvers and test control algorithms in the
Unreal Engine 3D simulation environment. The Simulation 3D Camera and Simulation 3D Fisheye
Camera blocks receive the image from the 3D simulation environment.

To control scene weather and sun position, on the Simulation 3D Scene Configuration block Weather
tab, select Override scene weather. Use the enabled parameters to change the sun position, clouds,
fog, and rain during the simulation.

 Unreal Engine Scenario Simulation

5-15

https://www.mathworks.com/help/releases/R2021a/driving/ref/simulation3dvehiclewithgroundfollowing.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/install-and-configure-support-package-for-customizing-scenes.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/prepare-custom-vehicle-mesh-for-the-unreal-editor.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/prepare-custom-vehicle-mesh-for-the-unreal-editor.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/install-and-configure-support-package-for-customizing-scenes.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/simulation3dsceneconfiguration.html

Detection and Tracking

Out-of-Sequence Measurements Handling: Ignore out-of-sequence
measurements of object tracks, or terminate tracking when one is
encountered
In the multiObjectTracker System object, the OOSMHandling property controls whether the
tracker neglects out-of-sequence measurements and continues running or stops running as soon as it
encounters an out-of-sequence measurement. To handle out-of-sequence measurements in the Multi-
Object Tracker block, use the equivalent Out-of-sequence measurements handling parameter.

Bird's-Eye View Example: Create a 360° bird's-eye-view image around
a vehicle
The Create 360° Bird's-Eye-View Image Around a Vehicle example shows how to create a 360° bird's-
eye-view image around a vehicle for use in a surround view monitoring system.

Radar and Tracking Examples: Process radar multipath detections,
simulate radar ghosts from multipath detections, and fuse lidar and
radar tracks in Simulink
The Simulate Radar Ghosts due to Multipath Return example shows how to generate ghost targets
that occur when signal energy is reflected off another target before returning to the radar. This
example requires the Radar Toolbox software.

The Highway Vehicle Tracking with Multipath Radar Reflections example shows how to assess and
mitigate the impact of multipath radar reflections when you track highway vehicles using an
extended object tracker. This example requires the Sensor Fusion and Tracking Toolbox and Radar
Toolbox software.

The Track-Level Fusion of Radar and Lidar Data in Simulink example shows how to fuse tracks
obtained by radar and lidar sensor measurements in Simulink. This example requires the Sensor
Fusion and Tracking Toolbox and Lidar Toolbox software. It closely follows the Track-Level Fusion of
Radar and Lidar Data example.

R2021a

5-16

https://www.mathworks.com/help/releases/R2021a/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/multiobjecttracker.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/multiobjecttracker.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/create-360-birds-eye-view-image.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/radar-ghost-multipath.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/multipath-radar-detection-and-tracking.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/track-level-fusion-of-radar-and-lidar-data-in-simulink.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/track-level-fusion-of-radar-and-lidar-data.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/track-level-fusion-of-radar-and-lidar-data.html

Localization and Mapping

Localization and Mapping Examples: Build an occupancy map from
lidar data using SLAM, develop a stereo visual SLAM algorithm, and
perform localization using HD map traffic data
The Build Occupancy Map from 3-D Lidar Data Using SLAM example demonstrates how to build a 2-
D occupancy map from 3-D lidar data using a simultaneous localization and mapping (SLAM)
algorithm.

The Develop Visual SLAM Algorithm Using Unreal Engine Simulation example now shows how to
develop a stereo visual SLAM algorithm. This algorithm measures depth information more accurately
than the monocular visual SLAM algorithm.

The Localization Correction Using Traffic Sign Data from HERE HD Maps example shows how to use
traffic sign data from the HERE HD Live Map service to correct GPS measurements collected by an
autonomous vehicle.

Functionality being removed or changed
hereHDLMConfiguration(region) syntax has been removed
Errors

In hereHDLMConfiguration objects, the syntax for configuring a hereHDLMReader object to
search catalogs from a specific region, hereHDLMConfiguration(region), has been removed.
Instead, specify the catalog name that corresponds to that region by using the
hereHDLMConfiguration(catalog) syntax.

Previously, the catalog names for regions such as North America were not available to customers.
HERE Technologies now makes these catalog names available through the HERE HD Live Map
Marketplace, making the region syntax unnecessary.

Update Code

This table shows a typical usage of the hereHDLMConfiguration(region) syntax, and shows how
to update that code using the hereHDLMConfiguration(catalog) syntax.

Discouraged Usage Recommended Replacement
catalog = hereHDLMConfiguration('North America') catalog = hereHDLMConfiguration(...

'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2')

 Localization and Mapping

5-17

https://www.mathworks.com/help/releases/R2021a/driving/ug/build-occupancy-map-from-lidar-data-slam.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/develop-visual-slam-algorithm-using-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/localization-correction-using-traffic-sign-data-from-here-hd-maps.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/herehdlmconfiguration.html
https://www.mathworks.com/help/releases/R2021a/driving/ref/herehdlmreader.html

Planning and Control

Motion Planning Example: Plan a path through an urban environment
using a dynamic occupancy grid map
The Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map example shows
how to perform dynamic replanning in an urban driving scene by using a grid-based tracker. The
estimated occupancy map is used for replanning of a Frenet reference path. This example requires
the Sensor Fusion and Tracking Toolbox and Navigation Toolbox software.

R2021a

5-18

https://www.mathworks.com/help/releases/R2021a/driving/ug/motion-planning-using-dynamic-map.html

Applications

Automated Driving Reference Applications: Examples on vehicle
sensor fusion, and code generation of vehicle detector, lane following
controller, and lane change planner
The Forward Vehicle Sensor Fusion example shows how to implement sensor fusion and tracking
from a camera and a radar sensor. You can test the sensor fusion and tracking algorithm using
different prebuilt scenarios in a 3D simulation environment that uses the Unreal Engine from Epic
Games.

The Surround Vehicle Sensor Fusion example shows how to implement sensor fusion and tracking
from multiple vision and radar sensors that provide 360-degree coverage surrounding an ego vehicle
for highway lane change maneuvers.

The Generate Code for Vision Vehicle Detector example shows how to test and generate deployable
code for a vehicle detector. The example demonstrates two variants of vehicle detector implemented
using an aggregate channel features (ACF) object detector and a pretrained you-only-look-once
(YOLO) v2 network. You can generate C++ code for the ACF object detector and CUDA code for the
YOLOv2 network.

The Generate Code for Highway Lane Following Controller example shows how to test a highway lane
following controller component using ground truth information. This example generates C++ code
for the controller and validates the functional equivalence using software-in-the-loop (SIL) simulation.

The Generate Code for Highway Lane Change Planner example shows how to design and test a lane
change planner component for a highway lane change application. The example also shows how to
generate C++ code, and assess functionality using software-in-the-loop (SIL) simulation.

The Automate Testing for Lane Marker Detector example shows how to automate the testing of a lane
marker detector component and verify the generated code using Simulink Test software.

The Automate Testing for Highway Lane Following Controls and Sensor Fusion example integrates
sensor fusion and control components of a highway lane following system. The example shows how to
automate the testing of this component assembly and verify the generated code using Simulink Test
software.

 Applications

5-19

https://www.mathworks.com/help/releases/R2021a/driving/ug/forward-vehicle-sensor-fusion.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/surround-vehicle-sensor-fusion.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/generate-code-for-vision-vehicle-detector.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/generate-code-for-highway-lane-following-controller.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/generate-code-for-highway-lane-change-planner.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/automate-testing-for-lane-marker-detector.html
https://www.mathworks.com/help/releases/R2021a/driving/ug/automate-testing-for-highway-lane-following-controls-and-sensor-fusion.html

R2020b

Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

6

Ground Truth Labeling

Labeler Enhancements: Label objects in images and video using
projected 3-D bounding boxes, load custom image formats, use
additional keyboard shortcuts, and more
This table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler
• Lidar Labeler — Introduced in R2020b

Enhancement Image Labeler Video Labeler Ground Truth
Labeler

Lidar Labeler

Load images with
custom image
formats using an
imageDatastore
object

Supported Not supported Not supported Not supported

Draw projected 3-
D bounding boxes
around objects in
images and video
using the projected
cuboid label type

Supported Supported Supported Not supported

Delete pixel labels Supported Supported Supported Not supported
Undo and redo
drawing a pixel
label an increased
number of times

Supported Supported Supported Not supported

Use keyboard
shortcuts for
selecting drawn
labels and resizing
bounding boxes

Supported Supported Supported Not supported

Specify attributes
for cuboid ROI
labels

Not supported Not supported Supported Supported

R2020b

6-2

https://www.mathworks.com/help/releases/R2020b/vision/ref/imagelabeler-app.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2020b/lidar/ref/lidarlabeler-app.html

Enhancement Image Labeler Video Labeler Ground Truth
Labeler

Lidar Labeler

Visualize point
cloud clusters
across all frames,
not just individual
frames, when
Snap to Cluster
option is selected,
by using a new
Cluster Settings
option

Not supported Not supported Supported Supported

Use keyboard
shortcuts for
panning across the
point cloud frame
and moving
multiple selected
cuboids

Not supported Not supported Supported Supported

 Ground Truth Labeling

6-3

Cuboid Scenario Simulation
Reverse Motion in Driving Scenarios: Simulate driving maneuvers
such as backing into parking spots
In the Driving Scenario Designer app, you can now specify reverse motions for actors in a driving
scenario. Previously, the app supported only forward motions. Use reverse motion to simulate
advanced driving maneuvers such as backing into a parking spot or completing a three-point turn.

To test reverse motion algorithms, you can use the Reverse_AEB scenarios described in Euro NCAP
Driving Scenarios in Driving Scenario Designer. To learn how to create your own reverse motion
scenarios, see the Create Reverse Motion Driving Scenarios Interactively example.

To simulate reverse motions in programmatic driving scenarios, specify negative speeds for actors in
the trajectory function.

OpenStreetMap Roads: Create driving scenarios using road data
imported from the OpenStreetMap web service
In the Driving Scenario Designer app, you can now generate a road network with data obtained
from the OpenStreetMap web service.

R2020b

6-4

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/euro-ncap-driving-scenarios-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/euro-ncap-driving-scenarios-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/create-reverse-motion-driving-scenarios-interactively.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.trajectory.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

For more details, see Import OpenStreetMap Data into Driving Scenario.

You can also import these roads into a drivingScenario object by using the 'OpenStreetMap'
syntax of the roadNetwork function.

OpenDRIVE Export: Share a driving scenario using the OpenDRIVE
format
Use the export function with a drivingScenario object to programmatically export a driving
scenario to OpenDRIVE format.

In the Driving Scenario Designer app, select the OpenDRIVE File menu item in the Export menu
to export the driving scenario to OpenDRIVE format.

 Cuboid Scenario Simulation

6-5

https://www.mathworks.com/help/releases/R2020b/driving/ug/import-openstreetmap-data-into-driving-scenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.export.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

Lidar Sensor Model Extensions: Generate synthetic point clouds from
scenarios in Driving Scenario Designer app and in Simulink
In the Driving Scenario Designer app, you can now model a lidar sensor and generate synthetic
point cloud data from a driving scenario.

This sensor obtains data from mesh representations of the roads and actors within the scenario.

R2020b

6-6

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

When you export a scenario containing a lidar sensor to MATLAB, the sensor is represented as a
lidarPointCloudGenerator System object (introduced in R2020a).

When you export a scenario containing a lidar sensor to Simulink, the sensor in represented as a
Lidar Point Cloud Generator block (introduced in R2020b).

Driving Scenario Enhancements: Rotate actors interactively, specify
yaw angles with trajectories, and additional features
When creating cuboid driving scenarios using the drivingScenario object or the Driving
Scenario Designer app, you can now use these features.

Interactive Actor Rotation

In the Driving Scenario Designer app, you can now rotate actors interactively. Previously, to rotate
an actor, you needed to specify the Yaw value on the Actors tab for the selected actor. To rotate
actors interactively, on the Scenario Canvas, pause your pointer on an actor and move the actor
rotation widget in the desired direction.

Yaw Angles for Actor Trajectories

In the Driving Scenario Designer app and the trajectory function used with drivingScenario
objects, you can now specify yaw angles for actor trajectories. Specifying yaw angles as a constraint
on trajectories enables finer control over actor motions. For example, you can specify more precise
motions for vehicles in parking scenarios or specify pedestrians to turn at 90-degree angles.

 Cuboid Scenario Simulation

6-7

https://www.mathworks.com/help/releases/R2020b/driving/ref/lidarpointcloudgenerator-system-object.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/lidarpointcloudgenerator.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.trajectory.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html

For sample scenarios with specified yaw constraints, see the AEB_PedestrianTurning scenarios
described in Euro NCAP Driving Scenarios in Driving Scenario Designer.

Actor Spawn and Despawn

You can now add or remove actors dynamically from a driving scenario during simulation.

In the Driving Scenario Designer app and the actor function used with drivingScenario
objects, you can specify these options:

• Entry time for actors to spawn (appear) in the scenario during simulation
• Exit time for actors to despawn (disappear) from the scenario during simulation

Mesh Plotter in Bird's-Eye Plot

In the birdsEyePlot object, you can now plot the meshes for actors in a driving scenario. To plot
actor meshes:

R2020b

6-8

https://www.mathworks.com/help/releases/R2020b/driving/ug/euro-ncap-driving-scenarios-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/birdseyeplot.html

1 Use the targetMeshes function to obtain the faces, vertices, and color of target actors that are
relative to a specific actor.

2 Create a meshPlotter object to configure the display of the meshes.
3 Use this plotter with the plotMesh function to display the faces, vertices, and color of each actor

mesh.

Ego Vehicle Indicator

In the Driving Scenario Designer app, you can now add a visual indicator around the ego vehicle in
a driving scenario. Use this option to identify the ego vehicle in simulations containing multiple
actors.

You can also add this visual indicator to actors in driving scenarios created using a
drivingScenario object. In the plot function used with this object, specify the
'ActorIndicators' name-value pair with the ActorID values of the actors around which you want
to draw the indicator.

Actor Pose Indicator

On the Scenario Canvas of the Driving Scenario Designer app, when you select an actor or pause
your pointer on it, a triangle indicating the pose (position and orientation) of the actor is displayed at
the actor origin.

 Cuboid Scenario Simulation

6-9

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.targetmeshes.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/birdseyeplot.meshplotter.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/birdseyeplot.plotmesh.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.plot.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

You can optionally display this pose indicator during simulation, which is useful for visualizing a
scenario with some vehicles moving forward and others moving in reverse.

Target Poses in Specified Range

The targetPoses function can optionally return poses that are within only a specified range of the
ego vehicle. By generating poses that are only within the maximum detection range of the ego vehicle
sensors, you can improve driving scenario performance. The generation of target poses in a specified
range is not supported in the Driving Scenario Designer app.

Named Roads and Actors

In the road, actor, and vehicle functions, the 'Name' name-value pair argument enables you to
specify a name for created roads and actors. The roadNetwork function uses this name-value pair to
import the names of OpenDRIVE, HERE HD Live Map, or OpenStreetMap roads.

Road Object

The road function can optionally return a Road object that contains the properties of the created
road, such as its road centers and banking angle. These properties are read-only.

Scenario Generation Example: Automate scenario generation for
driving applications
The Automatic Scenario Generation example shows how to automate scenario generation by using a
set of start and goal positions specified for vehicles in a driving scenario. This example automatically
generates random trajectories and adjusts the speed profile of each vehicle to synthesize a collision-
free scenario. Use this example to create random driving scenarios for testing automated driving
algorithms.

R2020b

6-10

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.targetposes.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/automatic-scenario-generation.html

Driving Scenario Performance: Improved performance when
simulating scenarios with large numbers of actors
The drivingScenario object and Driving Scenario Designer app have been redesigned for
improved performance when simulating scenarios that contain a large number of actors. For example,
this code generates a scenario with 100 vehicle actors by using the vehicle function.

scenario = drivingScenario;
numRoads = 50; % 2 vehicles per road

for i = 1:numRoads
 y = 10*i;
 roadCenters = [100 y 0; -100 y 0];
 road(scenario,roadCenters);

 v1 = vehicle(scenario);
 trajectory(v1,roadCenters,25);

 v2 = vehicle(scenario);
 trajectory(v2,flipud(roadCenters),25);
end

When simulating this scenario by using the advance function, the simulation is about 3x faster than
in the previous release:

plot(scenario)
while advance(scenario)
end

For each call to the advance function, the approximate execution times are:

R2020a: 0.039s

R2020b: 0.014s

The simulation was timed on a Windows 10, Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz test
system by using the timeit function:

timeit(@() advance(scenario))

 Cuboid Scenario Simulation

6-11

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.advance.html

Unreal Engine Scenario Simulation

Simulation 3D Vision Detection Generator Block: Generate synthetic
object and lane boundary detections from the Unreal Engine
simulation environment
The Simulation 3D Vision Detection Generator block models a synthetic vision sensor and generates
object and lane boundary detections from a simulation environment. This environment is rendered
using the Unreal Engine from Epic Games. The block includes parameters for modeling detection
accuracy, measurement noise, and camera intrinsics.

Unreal Engine Camera Views: Visualize vehicle acceleration, pitch, and
roll with improved camera controls and other usability improvements
The camera views in the Unreal Engine simulation environment include these usability
improvements.

Smooth Transition Between Views

Press the keyboard keys 0–9 to transition smoothly between vehicle camera views.

Cycle Through Vehicles in Scene

Press the Tab key to cycle the view between all vehicles in the scene.

R2020b

6-12

https://www.mathworks.com/help/releases/R2020b/driving/ref/simulation3dvisiondetectiongenerator.html

Vehicle Acceleration and Rotation

Press the L key to toggle a camera lag effect on and off. When you enable the lag effect, the camera
view includes:

• Position lag, based on the translational acceleration of the vehicle
• Rotation lag, based on the rotational velocity of the vehicle

This view provides for improved visualization of overall vehicle acceleration and rotation.

Vehicle Pitch and Roll

The views now lock the camera pitch and roll to the horizon, providing improved visualization of the
vehicle pitch and roll.

 Unreal Engine Scenario Simulation

6-13

Camera Distance

Use the mouse scroll wheel to control the camera distance from the vehicle.

Free-Camera Views

Press the F key to toggle the free camera mode on and off. When you enable the free camera mode,
you can use the mouse to change the pitch and yaw of the camera. This mode enables you to orbit the
camera around the vehicle.

R2020b

6-14

 Unreal Engine Scenario Simulation

6-15

Detection and Tracking

Tracking Examples: Perform grid-based tracking, track multiple lane
boundaries, and generate code for track-level fusion
The Grid-based Tracking in Urban Environments Using Multiple Lidars example shows how to track
moving objects by using multiple lidar sensors and a grid-based tracker.

The Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker example shows how to
design and test a multiple-lane tracking algorithm by using lane detections obtained by a probabilistic
camera in a driving scenario.

The Generate Code for a Track Fuser with Heterogeneous Source Tracks example shows how to
generate code for a track-level fusion algorithm where tracks originate from heterogeneous sources
with different state definitions.

These examples require the Sensor Fusion and Tracking Toolbox software.

Functionality being removed or changed
vehicleDetectorFasterRCNN function now uses MobileNet-v2 network architecture and does
not require type of vehicle detector model as input
Behavior change in future release

The vehicleDetectorFasterRCNN function now uses a modified version of the MobileNet-v2
convolutional neural network (CNN) as the base network for vehicle detector.

Previously, the vehicleDetectorFasterRCNN function enabled you to specify the type of vehicle
detector model, modelName, as an input for vehicle detection. The valid modelName values were:
'full-view' or 'front-rear-view', which specified models that were trained on different views
of vehicle images.

The vehicleDetectorFasterRCNN function now uses a generic vehicle detector that works for test
images containing any of these vehicle views: front, rear, left, or right.

Update Code

The table shows a typical usage of the modelName input argument of the
vehicleDetectorFasterRCNN function. It also shows how to update your code by removing the
input argument modelName.

Discouraged Usage Recommended Replacement
modelName = 'front-rear-view'
detector = vehicleDetectorFasterRCNN(modelName);

detector = vehicleDetectorFasterRCNN;

R2020b

6-16

https://www.mathworks.com/help/releases/R2020b/driving/ug/grid-based-tracking-in-urban-environments-using-multiple-lidars.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/track-multiple-lane-boundaries-with-a-global-nearest-neighbor-tracker.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/generate-code-for-a-track-fuser-with-heterogeneous-source-tracks.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/vehicledetectorfasterrcnn.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/vehicledetectorfasterrcnn.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/vehicledetectorfasterrcnn.html

Localization and Mapping

Localization Examples: Develop lidar and visual SLAM algorithms for
navigation using the Unreal Engine simulation environment
The Lidar Localization with Unreal Engine Simulation example shows how to develop and evaluate a
lidar localization algorithm using synthetic lidar data.

The Develop Visual SLAM Algorithm Using Unreal Engine Simulation example shows how to develop
a visual simultaneous localization and mapping (SLAM) algorithm using synthetic image data.

Both examples generate synthetic data from the Unreal Engine simulation environment.

HERE HD Live Map Marketplace Support: Read and visualize high-
definition map data from the HERE HD Live Map Marketplace service
The HERE HD Live Map features—the hereHDLMReader object and map import in driving scenarios
—now obtain map data from the Marketplace service provided by HERE Technologies. Previously,
these features obtained map data from the DataStore service and required you to enter an App ID
and App Code as credentials. To access HERE HD Live Map data from the Marketplace service, you
must enter your Marketplace credentials, which consist of an Access Key ID and Access Key Secret.

Compatibility Considerations
HERE HD Live Map features no longer support DataStore credentials (App ID and App Code). In
addition, the data obtained from the Marketplace catalogs might differ from the data in the DataStore
catalogs. The hereHDLMConfiguration object has been updated to configure hereHDLMReader
objects to read data from Marketplace catalogs only.

HERE HD Live Map Localization Layers: Read localization data such as
barriers, signs, and poles from a road network
The hereHDLMReader object now supports reading localization map layers from the HD Localization
Model of the HERE HD Live Map (HDLM) service. Use these layers to obtain information about
objects along the road, such as roadside barriers, traffic signs, and poles alongside and over the road.
Previously, the object supported reading data from only road and lane layers. Localization data for
obstacles along the road is not supported.

Functionality being removed or changed
hereHDLMConfiguration(region) syntax will be removed
Warns

In hereHDLMConfiguration objects, the syntax for configuring a hereHDLMReader object to
search catalogs from a specific region, hereHDLMConfiguration(region), will be removed in a
future release. Instead, specify the catalog name that corresponds to that region by using the
hereHDLMConfiguration(catalog) syntax.

 Localization and Mapping

6-17

https://www.mathworks.com/help/releases/R2020b/driving/ug/lidar-localization-with-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/develop-visual-slam-algorithm-using-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmreader.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmconfiguration.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmreader.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmconfiguration.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmreader.html

Previously, the catalog names for regions such as North America were not available to customers.
HERE Technologies now makes these catalog names available through the HERE HD Live Map
Marketplace, making the region syntax unnecessary.

R2020b

6-18

Planning and Control

Trajectory Planning Example: Plan a vehicle trajectory through
highway traffic
The Highway Trajectory Planning Using Frenet Reference Path example shows how to plan a local
trajectory in a highway driving scenario. This example uses a reference path and dynamic list of
obstacles to generate alternative trajectories for an ego vehicle.

This example requires the Navigation Toolbox software.

Functionality being removed or changed
InflationRadius and VehicleDimensions properties of vehicleCostmap object have been
removed
Errors

The InflationRadius and VehicleDimensions properties of the vehicleCostmap object have
been removed. Follow this process instead:

1 Use the inflationCollisionChecker function to create an InflationCollisionChecker
object, which has the InflationRadius and VehicleDimensions properties.

2 Specify this object as the value of the CollisionChecker property of the vehicleCostmap
object.

If you do specify these properties for vehicleCostmap, the object returns an error.

When the vehicleCostmap object was introduced in R2018a, this object inflated obstacles based on
the specified inflation radius and vehicle dimensions only. The InflationCollisionChecker
object, which is specified in the CollisionChecker property of vehicleCostmap, provides
additional configuration options for inflating obstacles. For example, you can specify the number of
circles used to compute the inflation radius, enabling more precise collision checking.

Update Code

The table shows a typical usage of the InflationRadius and VehicleDimensions properties of
vehicleCostmap. It also shows how to update your code by using the corresponding properties of
an InflationCollisionChecker object.

Invalid Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
 'VehicleDimensions',vehicleDims, ...
 'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
 'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
 'CollisionChecker',ccConfig);

 Planning and Control

6-19

https://www.mathworks.com/help/releases/R2020b/driving/ug/hiighway-trajectory-planning-using-frenet-reference-path.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/driving.costmap.inflationcollisionchecker.html

Applications

Automated Driving Reference Applications: Lane following with
intelligent vehicles, lane following with RoadRunner scenes, traffic
light negotiation with Unreal Engine, and code generation for lane
marker detection
The Highway Lane Following with Intelligent Vehicles example shows how to test highway lane
following in a scenario with intelligent target vehicles. The example configures the non-ego vehicles
as intelligent target vehicles such that they perform velocity keeping, lane change, or lane following.
Then, it tests the lane following application for an ego vehicle with respect to the changing behaviour
of non-ego vehicles.

The Highway Lane Following with RoadRunner Scene shows how to test lane following application on
a scene created using the RoadRunner scene editing software.

The Traffic Light Negotiation with Unreal Engine Visualization example shows how to design a
decision logic for negotiating a traffic light at an intersection and test on prebuilt scenarios in 3D
simulation environments that uses Unreal Engine.

The Generate Code for Lane Marker Detector example show hows to test a lane marker detector
algorithm on prebuilt scenarios in a 3D simulation environment and generate C++ code of the
detector model for real-time application. This 3D simulation environment is rendered using the
Unreal Engine from Epic Games

R2020b

6-20

https://www.mathworks.com/help/releases/R2020b/driving/ug/highway-lane-following-with-intelligent-vehicles.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/highway-lane-following-with-roadrunner-scene.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/traffic-light-negotiation-with-unreal-engine-visualization.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/generate-code-for-lane-marker-detector.html

R2020a

Version: 3.1

New Features

Bug Fixes

Compatibility Considerations

7

Ground Truth Labeling
Multisignal Ground Truth Labeling: Label multiple lidar and video
signals simultaneously
In the Ground Truth Labeler app, you can now label multiple signals representing the same scene
within one app session.

Previously, you had to label each signal in separate sessions. With multisignal labeling, you can:

• Load multiple signal types, including lidar point cloud signals. Previously the app supported only
image-based signals, which include videos and image sequences. You can now load signals
individually or load a collection of signals from a single source, such as a rosbag. You can also
create a custom reader for your own data source by using the
vision.labeler.loading.MultiSignalSource API.

• Label signals that display a scene at the same timestamp within a single frame. You can also now
label lidar signals by using the cuboid ROI label type. Cuboids are boxes that you draw around
regions of interest within a lidar point cloud.

• Export labeled ground truth data across all signals within a groundTruthMultisignal object.
Using this object, you can select labels by group name, signal name, signal type, label name, or
label type. In addition, by using the gatherLabelData function, you can gather relevant data
across multiple signals to train object detectors or semantic segmentation networks.

R2020a

7-2

https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/vision.labeler.loading.multisignalsource-class.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthmultisignal.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthmultisignal.gatherlabeldata.html

You can also create label definitions programmatically by using a
labelDefinitionCreatorMultisignal object. You can then import these label definitions into
the app.

To get started labeling multiple signals, see Get Started with the Ground Truth Labeler.

Compatibility Considerations
If you open an app session that was created in a previous release, the session continues to run.
However, the app now exports data as a groundTruthMultisignal object instead of a
groundTruth object. If you do not need to label multiple signals simultaneously and do not require
lidar labeling, use the Video Labeler app in Computer Vision Toolbox instead. The Video Labeler
app continues to export groundTruth objects that were saved from the Ground Truth Labeler app
in a previous release.

Lidar Labeling: Label lidar point clouds to train deep learning models
In the Ground Truth Labeler app, you can now label lidar point clouds. Previously, the app
supported labeling of videos and image sequences only. To label lidar data, use the cuboid ROI label
type. Cuboids are boxes that you draw around regions of interest within a lidar point cloud.

You can label lidar point clouds from these data sources:

• Point cloud sequences that are stored as point cloud data (PCD) or polygon (PLY) files
• Velodyne packet capture (PCAP) files
• Rosbags (requires ROS Toolbox)

You can use the labeled lidar data as training data for deep learning models, such as object detectors.

 Ground Truth Labeling

7-3

https://www.mathworks.com/help/releases/R2020a/driving/ref/labeldefinitioncreatormultisignal.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/get-started-with-the-ground-truth-labeler.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/groundtruth.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthlabeler-app.html

For more details on lidar labeling, see Label Lidar Point Clouds for Object Detection.

Ground Truth Labeler Enhancements: Rename scene labels, select ROI
color, and configure ROI label name display
In the Ground Truth Labeler app, you can now:

• Rename scene labels.
• Set custom colors for ROI labels.
• Configure ROI label names to always display, never display, or display only when you pause your

cursor over them.

R2020a

7-4

https://www.mathworks.com/help/releases/R2020a/driving/ug/label-lidar-point-clouds-for-object-detection.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthlabeler-app.html

Cuboid Scenario Simulation

Lidar Sensor Model: Generate synthetic point clouds from
programmatic driving scenarios
Use the lidarPointCloudGenerator System object to model a lidar sensor and generate synthetic
point cloud data for actors in a drivingScenario object.

The lidarPointCloudGenerator object obtains data from mesh representations of the roads and
actors within the scenario.

• To obtain the road mesh for the road on which the ego vehicle travels, use the roadMesh function.
• To obtain the meshes of actors within the scenario, use the actorProfiles function. This

function now additionally returns mesh properties. Actor and Vehicle objects also now contain
mesh properties.

To define your own actor meshes, use the extendedObjectMeshextendedObjectMesh function or
use one of these prebuilt meshes as a starting point:

• driving.scenario.carMesh
• driving.scenario.truckMesh
• driving.scenario.bicycleMesh
• driving.scenario.pedestrianMesh

To visualize actor meshes on a bird's-eye plot, create a pointCloudPlotter object, and then plot
the point cloud by using the plotPointCloud function.

For an example that shows how to fuse these synthetic point clouds with synthetic radar detections
obtained from a radarDetectionGenerator System object, see the Track-Level Fusion of Radar
and Lidar Data example

Bird's-Eye Scope Enhancements: Visualize radar and lidar data from
3D simulation sensors, and visualize actors from custom blocks
In the Bird's-Eye Scope, you can now visualize sensor data obtained from the 3D simulation
environment, which is rendered using the Unreal Engine from Epic Games. You can visualize sensor
coverage areas and detections from Simulation 3D Probabilistic Radar and Simulation 3D Lidar
blocks. For more details about visualizing data from these sensors, see Visualize 3D Simulation
Sensor Coverages and Detections

 Cuboid Scenario Simulation

7-5

https://www.mathworks.com/help/releases/R2020a/driving/ref/lidarpointcloudgenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/roadmesh.roadmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.actorprofiles.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/extendedobjectmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.carmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.truckmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.bicyclemesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.pedestrianmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/pointcloudplotter.pointcloudplotter.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/plotpointcloud.plotpointcloud.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-level-fusion-of-radar-and-lidar-data.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-level-fusion-of-radar-and-lidar-data.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/birdseyescope-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dprobabilisticradar.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dlidar.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html

The scope also now visualizes actors from any blocks that create buses containing actor poses.
Previously, the scope visualized actors output by the Scenario Reader block only. For details on the
actor pose information required when creating these buses, see the Actors output port of the
Scenario Reader block.

HERE HD Live Map Roads in Scenarios: Create driving scenarios using
imported road data from high-definition geographic maps
In the Driving Scenario Designer app, you can now generate a road network with data obtained
from the HERE HD Live Map 3 web service, provided by HERE Technologies.

3 You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

R2020a

7-6

https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html#mw_8f64f730-b9b2-40ac-8d77-e7d0f33fe6b5
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.here.com

For more details, see Import HERE HD Live Map Roads into Driving Scenario.

You can also import these roads into a drivingScenario object by using the 'HEREHDLiveMap'
syntaxes in the roadNetwork function.

Scenario Coordinate Transformation Blocks: Convert between vehicle
and world coordinates in driving scenarios, and convert between
cuboid and 3D simulation coordinates
The Vehicle To World block converts non-ego actor poses from the coordinate system relative to the
ego vehicle to the world coordinates of a driving scenario.

The Cuboid To 3D Simulation block converts vehicles authored in the cuboid environment into the
coordinate system of the 3D simulation environment.

By using these two blocks together, you can take scenarios created in the Driving Scenario
Designer app and recreate them within the 3D simulation environment. To recreate these scenarios,
use this workflow.

1 In the Driving Scenario Designer app, create a driving scenario. As a starting point, use one of
the prebuilt cuboid versions of 3D simulation environment scenes. For details, see Cuboid
Versions of 3D Simulation Scenes in Driving Scenario Designer.

2 In a Simulink model, read the ground truth data from the app scenario file by using a Scenario
Reader block. Configure the block to output the poses of both the ego vehicle and non-ego
vehicles.

3 Configure a Simulation 3D Scene Configuration block to display the 3D simulation scene that is
equivalent to the one you used in the app.

 Cuboid Scenario Simulation

7-7

https://www.mathworks.com/help/releases/R2020a/driving/ug/import-here-hd-live-map-roads-into-driving-scenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/vehicletoworld.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/cuboidto3dsimulation.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html

4 Convert the non-ego vehicle poses into world coordinates by using a Vehicle To World block.
5 Convert the ego and non-ego vehicle poses into the coordinate system of the 3D environment by

using Cuboid To 3D Simulation blocks. These blocks offset the positions of the vehicles to account
for the difference between origins in the two environments. In the cuboid environment, the origin
is underneath the center of the rear axle. In the 3D simulation environment, the origin is at the
approximate geometric center of the vehicle.

6 Specify the converted X, Y, and Yaw positions of all vehicles as the inputs to Simulation 3D
Vehicle with Ground Following blocks. Configure the blocks to recreate the cuboid scene, and
then simulate the model.

This block diagram shows a sample model of this workflow.

For an example that follows this workflow, see Visualize 3D Simulation Sensor Coverages and
Detections.

You can also convert non-ego vehicle poses from world coordinates to the coordinate system relative
to an ego vehicle by using the World To Vehicle block.

In addition, if you are using drivingScenario objects to create scenarios, you can now perform the
programmatic equivalent of the Vehicle To World block conversion by using the
driving.scenario.targetsToScenario function.

Programmatic Sensor Import: Read programmatically created radar
and vision sensors into the Driving Scenario Designer app
You can now import programmatically created radar and vision sensors into the Driving Scenario
Designer app. The programmatic sensors must be created using radarDetectionGenerator and
visionDetectionGenerator objects. You can also generate these programmatic sensors by using
MATLAB code exported from the app.

R2020a

7-8

https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dvehiclewithgroundfollowing.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dvehiclewithgroundfollowing.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/worldtovehicle.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/driving.scenario.targetstoscenario.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/visiondetectiongenerator-system-object.html

The import of a lidarPointCloudGenerator System object into the app is not supported.

Custom Actor Colors: Specify the colors of actors in a driving scenario
In the Driving Scenario Designer app, you can now change the colors of actors in the scenario.

To change the color of an actor, next to the actor selection list, click the color patch for that actor.

Then, use the color picker to select one of the standard colors commonly used in MATLAB graphics or
specify a custom color. You can also set a single default color for all newly created actors of a specific
class.

To set the plot display colors of actors in programmatic driving scenarios, use the PlotColor
property of Actor and Vehicle objects in a drivingScenario object. For details on setting this
property, see the 'PlotColor' name-value pair of the actor and vehicle functions.

Ego Vehicle Ground Following: Orient the ego vehicle to follow the
road surface elevation in closed-loop simulations
In the Scenario Reader block, select the Ego vehicle follows ground parameter to orient the ego
vehicle to follow the elevation of the road surface. The block updates the elevation, roll, pitch, and
yaw of the ego vehicle and outputs actors and lane boundaries relative to the updated ego vehicle
coordinates. Use this parameter in closed-loop simulations where the elevation of the road network
varies.

Rear-Facing Lane Detections: Detect lane boundaries from rear-facing
cameras in driving scenarios
In the Scenario Reader block, you can now output lane boundaries that are behind the ego vehicle. By
specifying these lane boundaries to a Vision Detection Generator block, you can generate synthetic
detections from rear-facing cameras mounted to the ego vehicle. For an example, see Test Open-Loop
ADAS Algorithm Using Driving Scenario.

To output these rear-facing lane boundaries, in the Scenario Reader block, specify negative distances
in the Distances from ego vehicle for computing boundaries (m) parameter. Previously, the
block computed only positive distances, which correspond to lane boundaries in front of the ego
vehicle.

You can also output lane boundaries in programmatic scenarios for use with
visionDetectionGenerator objects. In the laneBoundaries function, specify negative distances
in the 'XDistance' name-value pair.

Road Interactions in Scenarios: Control the ability to modify roads in
driving scenarios
In the Driving Scenario Designer app, when you import OpenDRIVE road networks or road data
from the HERE HD Live Map web service, the ability to modify roads is disabled by default. Disabling

 Cuboid Scenario Simulation

7-9

https://www.mathworks.com/help/releases/R2020a/driving/ref/lidarpointcloudgenerator-system-object.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/test-open-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/test-open-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/visiondetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.laneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html

these road interactions prevents you from accidentally modifying roads that are meant to match real-
world scenarios. The prebuilt scenarios that simulate the 3D simulation scenes also have road
interactions disabled. All other prebuilt scenarios and any scenarios that you create yourself have
road interactions enabled by default.

To turn on or off road interactions in the app, in the bottom-left corner of the Scenario Canvas pane,
first click the Configure the Scenario Canvas button . Then, select Enable road interactions or
Disable road interactions, respectively.

Cuboid Versions of 3D Simulation Scenes: Build scenarios in the
Driving Scenario Designer app for use in a 3D simulation environment
The Driving Scenario Designer app now provides prebuilt scenarios that recreate scenes from a 3D
simulation environment. In these cuboid versions of the scenes, you can add vehicles, which are
represented as simple box shapes, and specify their trajectories. Then, you can simulate these
vehicles and trajectories in your Simulink model by using the higher fidelity 3D simulation versions of
the scenes. The 3D environment renders the scenes using the Unreal Engine from Epic Games.

For details on opening these scenes and on the scenes that are available, see Cuboid Versions of 3D
Simulation Scenes in Driving Scenario Designer.

For an example that shows how to use these scenes with a 3D simulation Simulink model, see
Visualize 3D Simulation Sensor Coverages and Detections.

laneMarking Function Enhancements: Define lane marking with
multiple marker styles
You can now use the laneMarking function to define multiple marker styles along a lane by
following these steps.

1 Create an array of lane marking objects with different marker types. Use the name-value pair
'SegmentRange' to specify the range for each marker type. For example, this code specifies a
lane marking with two marker types.

([laneMarking('Solid') laneMarking('Dashed')],'SegmentRange',[0.5 0.5]);
2 Pass the array as input to the laneMarking function. The function outputs a composite lane

marking object that contains the properties of different markers along the lane.

R2020a

7-10

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/lanemarking.html

Example of Driving Scenario Using Composite Lane Marking for Passing Zones

trajectory Function Enhancements: Pause actors at a waypoint
The trajectory function now takes wait times as an input to pause actors at specific waypoints
along a trajectory. Use the waittime input argument of the trajectory function to generate stop-
and-go driving scenarios.

 Cuboid Scenario Simulation

7-11

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.trajectory.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.trajectory.html

Example of Stop-and-Go Driving Scenario

Driving Scenario Designer App Enhancements: Add composite lane
markings and wait times
In the Driving Scenario Designer app, you can now:

• Add composite lane markings to a lane by specifying different markers along a lane.
• Add wait times to pause an actor at desired waypoints along its trajectory.

Driving Scenarios: Improved performance when creating road
networks and actor trajectories
The drivingScenario object and Driving Scenario Designer app show improved performance
when creating roads or trajectories of more than 40 km and when creating road networks containing
approximately 500 roads or more. The table shows speed-ups of up to 75% when creating road
networks and up to 95% when creating actor trajectories.

Scenario R2019b R2020a
Single long road (~44 km) 24.1 s 5.73 s
Large road network (489 roads) 21.48 s 12.49 s
Single long actor trajectory
(~44 km)

10.08 s 0.43 s

R2020a

7-12

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html

Unreal Engine Scenario Simulation

3D Scene Customization: Simulate driving scenarios in a 3D
environment using scenes created in the Unreal Editor
The Simulation 3D Scene Configuration block now provides options for simulating driving scenarios
and sensors within your own customized scenes. Previously, the block enabled you to simulate only
within a set of prebuilt scenes. The customized scenes must have been created using the Unreal
Editor and must be compatible with Version 4.23. Using custom scenes, you can:

• Simulate vehicles and sensors from your Simulink model directly in the Unreal® Editor. Use this
option to quickly modify your scene based on simulation results.

• Package scenes into an executable file and simulate from them by using the Simulation 3D Scene
Configuration block. Use this option to speed up performance and to simulate in custom scenes
without having to open the Unreal Editor.

To use custom scenes, you must install the Automated Driving Toolbox Interface for Unreal Engine 4
Projects. This support package includes a plugin that establishes a connection between the Unreal
Editor and MATLAB. It also includes customizable versions of the prebuilt 3D scenes that you can
select from the Simulation 3D Scene Configuration block, with the exception of the Virtual Mcity
scene.

Scene customization is available on Windows® 64-bit platforms only and requires Visual Studio® 2017
or higher.

For more details on scene customization, see Customize 3D Scenes for Automated Driving.

3D Display for Cuboid Simulations: Visualize scenarios in a 3D
environment from the Driving Scenario Designer app
In the Driving Scenario Designer app, click 3D Display to visualize your cuboid scenario in a 3D
environment. The app renders this environment using the Unreal Engine from Epic Games.

 Unreal Engine Scenario Simulation

7-13

https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/customize-3d-scenes-for-automated-driving.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html

You can also use this display as a preview of a scenario that you recreate for the 3D simulation
environment in Simulink. For an example, see Visualize 3D Simulation Sensor Coverages and
Detections.

Headless Mode: Run 3D simulations more quickly by not opening the
Unreal Engine visualization window
In the Simulation 3D Scene Configuration block, use the Display 3D window parameter to select
whether to display the 3D visualization window during simulation.

Consider running simulations without visualization, that is, in headless mode, in these cases.

• You want to run multiple 3D simulations in parallel to test models in different Unreal Engine
scenarios.

• You want to capture sensor data to analyze in MATLAB but do not need to watch the visualization.

3D Simulation Version Upgrade: Run 3D simulations using Unreal
Engine, Version 4.23
The 3D visualization engine that comes installed with Automated Driving Toolbox has been updated to
Unreal Engine, Version 4.23. Previously, the toolbox used Unreal Engine, Version 4.19.

Compatibility Considerations
If your Simulink model uses a custom executable or project developed in a previous Unreal Engine
version, you must migrate that project or executable to version 4.23. For more details on migrating
projects or executables to newer Unreal Engine versions, see the Unreal Engine 4 documentation.

Box Truck Vehicle Type: Simulate vehicles with the dimensions of a
box truck in the 3D simulation environment
You can configure the Simulation 3D Vehicle with Ground Following block to implement a box truck in
3D simulations. To create vehicles of this type, set the Type parameter of the vehicle block to Box
truck. For box truck dimensions, see the Box Truck reference page.

Functionality being removed or changed
Renamed parameter in Simulation 3D Scene Configuration block
Behavior change

In the Simulation 3D Scene Configuration block, the Scene description parameter has been
renamed to Scene name. Use this parameter to simulate in one of the default, prebuilt scenes
provided with Automated Driving Toolbox. Starting in R2020a, to simulate in one of these scenes, you
must first set the Scene source parameter to Default Scenes, which is the default selection for
this parameter.

R2020a

7-14

https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html
https://www.unrealengine.com/en-US/unreal
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dvehiclewithgroundfollowing.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/boxtruck.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html

Detection and Tracking

YOLO v2 Vehicle Detection: Detect vehicles using a vehicle detector
pretrained by a you-only-look-once (YOLO) v2 network
Use the vehicleDetectorYOLOv2 function to detect vehicles by using a pretrained YOLO v2 vehicle
detector.

SSD Object Detection: Detect objects in monocular camera images
using the single shot multibox detector (SSD) algorithm
The configureDetectorMonoCamera function can now configure a monocular camera to use the
SSD algorithm, returning an ssdObjectDetectorMonoCamera object.

Multiple-Object Tracking Enhancements: Initialize, confirm, and delete
tracks, and predict track states at specified times
In a multi-object tracker created using a multiObjectTracker System object, you can now perform
these actions.

• Manually initialize tracks in the tracker by using the initializeTrack function.
• Manually delete existing tracks from the tracker by using the deleteTrack function.
• Confirm or delete tracks based on recent track history by using the ConfirmationThreshold

and DeletionThreshold properties of the tracker. The tracker now uses the
trackHistoryLogic object to confirm or delete tracks.

• Predict tracks to specified times by using the predictTracksToTime function.

In addition, in MATLAB, the tracker now returns tracks as an array of objectTrack objects. When
generating C or C++ code using MATLAB Coder™, the tracker still returns tracks as an array of
structures, which was previously the only returned track format. However, the Time field of these
structures has been renamed to UpdateTime. This field corresponds to the UpdateTime property of
objectTrack objects.

These enhancements make the multiObjectTracker System object more closely aligned with the
trackers in Sensor Fusion and Tracking Toolbox, making it easier to switch between trackers in your
code.

Compatibility Considerations
As a result of these enhancements, the ConfirmationParameters and NumCoastingUpdates
properties are no longer recommended. Instead, use ConfirmationThreshold and
DeletionThreshold, respectively. For details about updating your code to use the recommended
properties, ConfirmationParameters and NumCoastingUpdates properties of the
multiObjectTracker System object are not recommended.

If you are using a previous version of MATLAB, then the change in output track format has additional
compatibility considerations. For more details, see Track output format of multiObjectTracker
changed.

 Detection and Tracking

7-15

https://www.mathworks.com/help/releases/R2020a/driving/ref/vehicledetectoryolov2.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/ssdobjectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker.initializetrack.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker.deletetrack.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/trackhistorylogic.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker.predicttrackstotime.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/objecttrack.html
https://www.mathworks.com/help/releases/R2020a/driving/release-notes.html#mw_3bfa5de2-0ea4-4437-8159-9680869aab80
https://www.mathworks.com/help/releases/R2020a/driving/release-notes.html#mw_3bfa5de2-0ea4-4437-8159-9680869aab80
https://www.mathworks.com/help/releases/R2020a/driving/release-notes.html#mw_47bf6f08-3706-4bb0-94c2-d1441c585f9e
https://www.mathworks.com/help/releases/R2020a/driving/release-notes.html#mw_47bf6f08-3706-4bb0-94c2-d1441c585f9e

Track History Logic: Confirm and delete tracks based on recent track
history
The trackHistoryLogic object confirms or deletes tracks based on the recent track history.
Configure this object to manage the tracks of a multiObjectTracker System object.

Alpha-Beta Estimation Filter: Track objects using a linear motion and
measurement models
The trackingABF object is an alpha-beta tracking filter that follows a linear motion model and has a
linear measurement model. Linear motion is defined by constant velocity or constant acceleration.
Use this filter to predict the future location of an object, reduce noise for a detected location, and
help associate multiple objects with their tracks.

Code Generation: Generate C/C++ code using MATLAB Coder
These objects and functions now support code generation.

• parabolicLaneBoundary
• findParabolicLaneBoundaries
• cubicLaneBoundary
• findCubicLaneBoundaries
• insertLaneBoundary
• computeBoundaryModel

Tracking Examples: Fuse radar and lidar tracks, perform track-to-track
fusion in Simulink, and track vehicles using lidar in Simulink
The Track-Level Fusion of Radar and Lidar Data example shows how to fuse tracks obtained by radar
and lidar sensor measurements.

The Track-to-Track Fusion for Automotive Safety Applications in Simulink example shows how to
perform track-to-track level fusion by building a decentralized tracking architecture in Simulink.

The Track Vehicles Using Lidar Data in Simulink example shows the Simulink workflow for
processing lidar point cloud data and using that data to track vehicles.

These examples require the Sensor Fusion and Tracking Toolbox software.

Functionality being removed or changed
ConfirmationParameters and NumCoastingUpdates properties of the multiObjectTracker
System object are not recommended
Still runs

The ConfirmationParameters and NumCoastingUpdates properties of the
multiObjectTracker System object are not recommended. Instead, use their corresponding
properties: ConfirmationThreshold and DeletionThreshold, respectively. These properties are

R2020a

7-16

https://www.mathworks.com/help/releases/R2020a/driving/ref/trackhistorylogic.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/trackingabf.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/paraboliclaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/findparaboliclaneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/cubiclaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/findcubiclaneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/insertlaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/paraboliclaneboundary.computeboundarymodel.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-level-fusion-of-radar-and-lidar-data.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-to-track-fusion-for-automotive-safety-applications-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-vehicles-using-lidar-data-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html

the same ones used in Sensor Fusion and Tracking Toolbox trackers, making it easier to switch
between trackers in your code.

There are no current plans to remove ConfirmationParameters and NumCoastingUpdates. If
you do specify these properties, the values in the corresponding ConfirmationThreshold and
DeletionThreshold properties are updated to match.

Update Code

The table shows a typical usage of the ConfirmationParameters and NumCoastingUpdates
properties, where you set the properties during creation by using name-value pairs. The table also
shows how to update your code by using the corresponding new properties.

Recommended Not Recommended
tracker = multiObjectTracker(...
 'ConfirmationParameters',[4 5], ...
 'NumCoastingUpdates',10);

tracker = multiObjectTracker(...
 'ConfirmationThreshold',[4 5], ...
 'Deletionthreshold',10);

Track output format of multiObjectTracker changed
Behavior change

Starting from R2020a, the track output format of multiObjectTracker changes from track
structure to objectTrack. As a result, when you load a multiObjectTracker created in an earlier
version of MATLAB, you need to release the tracker first so that it can allow objectTrack as the
track output format.

 Detection and Tracking

7-17

https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/objecttrack.html

Localization and Mapping

Geographic Coordinate Transformations: Convert between geographic
and local coordinates
Use the latlon2local function to convert geographic latitude-longitude coordinates to local (x, y)
coordinates. To convert local coordinates to geographic coordinates, use the local2latlon
function.

Multiroute Geographic Map Display: Simultaneously stream
geographic coordinates from multiple driving routes
The geoplayer object now supports the display of multiple driving routes. To control which route
remains visible in the plot, use the CenterOnID property.

Lidar SLAM Examples: Build a map from lidar data using a
simultaneous localization and mapping algorithm
The Build a Map from Lidar Data Using SLAM example shows how to process recorded lidar data to
build a map and estimate the trajectory of a vehicle by using a SLAM algorithm.

The Design Lidar SLAM Algorithm Using 3D Simulation Environment shows how to build a map using
synthetic lidar data recorded from a 3D simulation environment.

R2020a

7-18

https://www.mathworks.com/help/releases/R2020a/driving/ref/latlon2local.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/local2latlon.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/geoplayer.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/build-a-map-from-lidar-data-using-slam.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/design-lidar-slam-algorithm-using-3d-simulation-environment.html

Planning and Control

Quaternions: Represent orientation and rotations efficiently for
localization
The quaternion data type enables efficient representation of orientation and rotations. In
automated driving, sensors such as inertial measurement units (IMUs) report orientation readings as
quaternions. To use this data for localization, you can capture it in a quaternion object and convert
it to other rotation formats, such as Euler angles and rotation matrices. For more details on
quaternions, see Rotations, Orientations, and Quaternions for Automated Driving.

 Planning and Control

7-19

https://www.mathworks.com/help/releases/R2020a/driving/ref/quaternion.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/rotations-using-quaternions-in-automated-driving.html

Applications

Automated Driving Reference Applications: Simulate highway lane
following, highway lane change, and traffic light negotiation systems
The Highway Lane Following example shows how to simulate a highway lane-following application
that has controller, sensor fusion, and vision processing components. These components are tested in
a 3D simulation environment that includes camera and radar sensor models. To automate the testing
of these components and their generated code using Simulink Test software, see the Automate
Testing for Highway Lane Following example.

The Highway Lane Change example shows how to simulate an automated lane change maneuver
system for a highway driving scenario.

The Traffic Light Negotiation example shows how to design and test decision logic for negotiating a
traffic light at an intersection.

R2020a

7-20

https://www.mathworks.com/help/releases/R2020a/driving/examples/lane-following-control-with-monocular-camera-perception.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/automate-testing-for-highway-lane-following.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/automate-testing-for-highway-lane-following.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/highway-lane-change.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/traffic-light-negotiation.html

R2019b

Version: 3.0

New Features

Bug Fixes

Compatibility Considerations

8

Ground Truth Labeling

Ground Truth Labeling Enhancements: Copy and paste pixel labels,
improved pan and zoom, and improved frame navigation
With the Ground Truth Labeler app, you can now:

• Copy and paste pixel labels
• Pan and zoom more easily within the labeling window.
• Navigate to a specific frame by clicking on the scrubber or visual summary timeline

Lane Boundary Detection Algorithm: Automate the labeling of lane
boundaries using the Ground Truth Labeler
The Ground Truth Labeler app now includes a built-in algorithm for automating the labeling of lane
boundaries in a video or image sequence. Select this algorithm from the Automate Labeling section
of the app toolstrip.

R2019b

8-2

https://www.mathworks.com/help/releases/R2019b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/groundtruthlabeler-app.html

Cuboid Scenario Simulation

drivingScenario Import: Read programmatically created driving
scenarios into the Driving Scenario Designer app and Simulink
You can now import programmatically created driving scenarios into the Driving Scenario Designer
app or Simulink by using the Scenario Reader block. You can create programmatic driving scenarios
by generating a drivingScenario object from the app or specifying a drivingScenario object at
the MATLAB command line. These objects enable you to create multiple variations of scenarios. You
can then import these scenarios into the app or into Simulink and test your driving algorithm on
these variations. For more details, see Create Driving Scenario Variations Programmatically.

Driving Scenario Designer Export to Simulink: Generate Simulink
models of driving scenarios and sensors
You can now generate a Simulink model from a scenario developed using the Driving Scenario
Designer app. The generated models contain a Scenario Reader that reads roads and actors from the
scenario and sensor detections blocks that recreate the sensors defined in the app. For more details
on generating these blocks, see Generate Sensor Detection Blocks Using Driving Scenario Designer.

drivingScenario Enhancements: Create roads with driving, parking,
border, shoulder, and restricted lanes
Use the laneType function to define different lane types for roads in a driving scenario. You can
define driving, parking, border, shoulder, and restricted lanes. To create a driving scenario containing
roads with different types of lanes, follow these steps:

1 Define lane types by using the laneType function to create a lane type object.
2 Create lane specifications for a road by using the lanespec function. Add the lane type object to

lane specifications by using the 'Type' name-value pair of the lanespec function.
3 Add roads with specified lanes to the driving scenario by using the road function.

roadNetwork Enhancements: Import additional lane types of
OpenDRIVE roads into a driving scenario
You can now read and import parking, border, shoulder, and restricted lane types in an OpenDRIVE
road network into a driving scenario by using the roadNetwork function. Previously, only driving
lanes were supported. To show lane types in the driving scenario plot, use the 'ShowLaneTypes'
name-value pair of the roadNetwork function.

Bird's-Eye Scope World Coordinates View: Visualize scenarios in world
coordinates
Using the Bird's-Eye Scope, you can now view the ground truth of a scenario in world coordinates.
Previously, the scope displayed scenarios in vehicle coordinates only. You can simultaneously view
scenarios in both vehicle coordinates and world coordinates.

 Cuboid Scenario Simulation

8-3

https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/create-driving-scenario-variations-programmatically.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/generate-sensor-detection-blocks-using-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/lanespec.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/lanespec.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyescope.html

Unreal Engine Scenario Simulation

3D Simulation: Develop, test, and verify driving algorithms in a 3D
simulation environment rendered using the Unreal Engine from Epic
Games
Automated Driving Toolbox provides a cosimulation framework for modeling driving algorithms in
Simulink and visualizing their performance in a 3D environment. This 3D simulation environment is
rendered using the Unreal Engine from Epic Games.

To use the provided 3D simulation blocks, open the Simulation 3D block library.

drivingsim3d

R2019b

8-4

Using these blocks, you can:

• Configure prebuilt scenes in the 3D simulation environment.
• Place and move vehicles within these scenes.
• Set up camera, radar, and lidar sensors on the vehicles.
• Simulate sensor outputs based on the environment around the vehicle.
• Obtain ground truth data for semantic segmentation and depth information.

Use 3D simulation to supplement real data when developing, testing, and verifying the performance
of automated driving algorithms. If you have a vehicle model, you can use sensor blocks to perform
realistic closed-loop simulations that encompass the entire automated driving stack, from perception
to control.

To get started, see these examples:

• Select Waypoints for 3D Simulation
• Design of Lane Marker Detector in 3D Simulation Environment
• Visualize Automated Parking Valet Using 3D Simulation
• Simulate Lidar Sensor Perception Algorithm

 Unreal Engine Scenario Simulation

8-5

https://www.mathworks.com/help/releases/R2019b/driving/examples/select-waypoints-for-3d-simulation.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/design-of-lane-marker-detector-in-3d-simulation-environment.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/visualize-automated-parking-valet-using-3d-simulation.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/simulate-lidar-sensor-perception-algorithm.html

• Simulate Radar Sensors in 3D Environment

To learn more, see Unreal Engine Driving Scenario Simulation.

Note 3D simulation is supported on Windows only.

R2019b

8-6

https://www.mathworks.com/help/releases/R2019b/driving/examples/simulate-radar-sensors-in-3d-environment.html
https://www.mathworks.com/help/releases/R2019b/driving/unreal-engine-driving-scenario-simulation.html

Detection and Tracking

Track-to-Track Fusion Example: Fuse tracks from multiple vehicles to
increase automotive safety (requires Sensor Fusion and Tracking
Toolbox)
The Track-to-Track Fusion for Automotive Safety Applications example shows how to fuse tracks from
multiple vehicles to provide a more comprehensive estimate of the environment than can be seen by
either vehicle alone. This example requires a Sensor Fusion and Tracking Toolbox license.

YOLO v2 Acceleration: Acceleration support for YOLO v2 object
detection
The detect function used with yolov2ObjectDetectorMonoCamera objects now supports
performance optimization in both CPU and GPU execution environments. To set the performance
optimization, use the 'Acceleration' name-value pair of the detect function.

Code Generation: Generate C/C++ code using MATLAB Coder
These objects and functions now support code generation:

• acfObjectDetectorMonoCamera
• birdsEyeView
• segmentLaneMarkerRidge

 Detection and Tracking

8-7

https://www.mathworks.com/help/releases/R2019b/driving/examples/track-to-track-fusion-for-automotive-safety-applications.html
https://www.mathworks.com/help/releases/R2019b/vision/ref/yolov2objectdetector.detect.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/yolov2objectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/acfobjectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyeview.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/segmentlanemarkerridge.html

Localization and Mapping

Lidar Example: Build a map from lidar data
The Build a Map from Lidar Data example shows how to process 3-D lidar sensor data to
progressively build a map, with assistance from inertial measurement unit (IMU) readings. You can
use these built maps to plan paths for vehicle navigation or to perform localization. The example also
shows how to evaluate and improve the built maps using global positioning system (GPS) readings.

This example requires a Mapping Toolbox™ license.

HERE HD Live Map Linux Support: Read and visualize high-definition
map data on Linux machines
hereHDLMReader objects are now supported on Linux machines. The HERE HD Live Map service is
now supported on all platforms (Windows, Mac, and Linux®).

R2019b

8-8

https://www.mathworks.com/help/releases/R2019b/driving/examples/build-a-map-from-lidar-data.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/herehdlmreader.html

Planning and Control

Velocity Profiler: Generate the velocity profile of a driving path given
kinematic constraints
The Velocity Profiler block generates a velocity profile of a driving path that satisfies a set of specified
kinematic constraints. These constraints include the physical limitations of the vehicle and comfort
criteria such as maximum allowable speed, maximum lateral acceleration, and maximum longitudinal
jerk.

You can use the generated velocity profile as the input reference velocities of a longitudinal
controller, as shown in the Automated Parking Valet in Simulink example.

For more details on using the Velocity Profiler block, see these examples:

• Velocity Profile of Straight Path
• Velocity Profile of Path with Curve and Direction Change

Functionality being removed or changed
InflationRadius and VehicleDimensions properties of vehicleCostmap object will be
removed
Warns

The InflationRadius and VehicleDimensions properties of vehicleCostmap objects will be
removed in a future release. Instead:

1 Use the inflationCollisionChecker function to create an InflationCollisionChecker
object, which has the properties InflationRadius and VehicleDimensions.

2 Specify this object as the value of the CollisionChecker property of vehicleCostmap.

If you do specify these properties for vehicleCostmap, the values in the corresponding properties of
CollisionChecker are updated to match.

When the vehicleCostmap object was introduced in R2018a, this object inflated obstacles based on
the specified inflation radius and vehicle dimensions only. The InflationCollisionChecker
object, which is specified in the CollisionChecker property of vehicleCostmap, provides
additional configuration options for inflating obstacles. For example, you can specify the number of
circles used to compute the inflation radius, enabling more precise collision checking.

Update Code

The table shows a typical usage of the InflationRadius and VehicleDimensions properties of
vehicleCostmap. It also shows how to update your code by using the corresponding properties of
an InflationCollisionChecker object.

 Planning and Control

8-9

https://www.mathworks.com/help/releases/R2019b/driving/ref/velocityprofiler.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/automated-parking-valet-in-simulink.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/velocity-profile-of-straight-path.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/velocity-profile-of-path-with-curve-and-direction-change.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/driving.costmap.inflationcollisionchecker.html

Discouraged Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
 'VehicleDimensions',vehicleDims, ...
 'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
 'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
 'CollisionChecker',ccConfig);

R2019b

8-10

R2019a

Version: 2.0

New Features

Bug Fixes

9

Ground Truth Labeling

Ground Truth Labeling: Organize labels by logical groups, use assisted
freehand for pixel labeling, and other enhancements
With the Ground Truth Labeler app, you can now:

• Create groups for organizing label definitions. You can also move labels between groups by
dragging them.

• Use the assisted freehand to create pixel regions of interest (ROIs) for semantic segmentation.
This tool automatically find edges between selected points in an image.

• Move multiple selected ROIs in an image.
• Edit previously created label definitions.
• Add additional list items to a previously created attribute.

R2019a

9-2

https://www.mathworks.com/help/releases/R2019a/driving/ref/groundtruthlabeler-app.html

Cuboid Scenario Simulation

Scenario Reader: Read driving scenarios into Simulink to test vehicle
controllers and sensor fusion algorithms
The Scenario Reader block reads the roads and actors from a scenario file created using the Driving
Scenario Designer app. Use the output actor poses and lane boundaries to test your vehicle control
and sensor fusion models. The block supports open-loop and closed-loop models and can return
outputs in either vehicle coordinates or world coordinates.

For more details on using the Scenario Reader block, see these examples:

• Test Open-Loop ADAS Algorithm Using Driving Scenario
• Test Closed-Loop ADAS Algorithm Using Driving Scenario

Scenario Generation Example: Generate virtual driving scenarios from
recorded vehicle data
The Scenario Generation from Recorded Vehicle Data example shows how to generate a virtual
driving scenario from GPS and lidar data recorded from a vehicle.

Using virtual scenarios, you can:

• Visualize and study the real scenario being recreated from the recorded vehicle data.
• Synthesize scenario variations by programmatically modifying the virtual scenario. You can use

these variations when designing and evaluating autonomous driving systems.

 Cuboid Scenario Simulation

9-3

https://www.mathworks.com/help/releases/R2019a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019a/driving/ug/test-open-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2019a/driving/ug/test-closed-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/scenario-generation-from-recorded-vehicle-data.html

Detection and Tracking

YOLO v2 Object Detection: Detect objects in a monocular camera
using a "you-only-look-once" v2 deep learning object detector
The configureDetectorMonoCamera function can now configure a YOLO v2 object detector,
returning a yolov2ObjectDetectorMonoCamera object.

Tracking Examples: Track vehicles using lidar; evaluate the
performance of extended object trackers
The Track Vehicles Using Lidar: From Point Cloud to Track List example shows how to use a joint
probabilistic data association (JPDA) tracker to track vehicles with a lidar sensor.

In addition, the Extended Object Tracking example now shows how to track extended objects using a
probability hypothesis density (PHD) tracker. The example also shows how to use error and
assignment metrics to evaluate the results of different trackers.

These examples require a Sensor Fusion and Tracking Toolbox license.

R2019a

9-4

https://www.mathworks.com/help/releases/R2019a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/yolov2objectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/track-vehicles-using-lidar.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/extended-object-tracking.html

Localization and Mapping

HERE HD Live Map Reader: Read and visualize data from high-
definition maps designed for automated driving applications
Use the hereHDLMReader object to read road and lane network data from the HERE HD Live Map 4
(HDLM) web service, provided by HERE Technologies. HERE HDLM content provides highly detailed
and accurate information about the vehicle environment and is suitable for applications such as
localization, scenario generation, navigation, and path planning.

To configure the reader object to read in map data from a specific catalog or version, use a
hereHDLMConfiguration object. To manage your HERE HDLM credentials, use the
hereHDLMCredentials function.

For more details, see Access HERE HD Live Map Data. For an example, see Use HERE HD Live Map
Data to Verify Lane Configurations.

Note HERE HDLM reader objects do not work on Linux machines.

Custom Basemaps: Choose geographic basemaps on which to
visualize driving routes in geoplayer
The geoplayer object now supports the use of custom basemaps from providers such as HERE
Technologies and OpenStreetMap. To specify a custom basemap, use the addCustomBasemap
function. To remove a custom basemap, use the removeCustomBasemap function.

4 You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

 Localization and Mapping

9-5

https://www.mathworks.com/help/releases/R2019a/driving/ref/herehdlmreader.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/herehdlmconfiguration.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/herehdlmcredentials.html
https://www.mathworks.com/help/releases/R2019a/driving/ug/access-here-hd-live-map-data.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/use-here-hd-live-map-data-to-verify-lane-configurations.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/use-here-hd-live-map-data-to-verify-lane-configurations.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/geoplayer.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/addcustombasemap.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/removecustombasemap.html
https://www.here.com

Planning and Control
Longitudinal Controller: Control the velocity of autonomous vehicles
The Longitudinal Controller Stanley block computes the acceleration and deceleration commands
needed to control the velocity of a vehicle. The block computes these commands using the discrete
proportional-integral control law. Use this block in a closed-loop simulation to adjust the velocity of a
vehicle as it follows a path.

Dynamic Lateral Controller: Control the steering angle of autonomous
vehicles considering realistic vehicle dynamics
The Lateral Controller Stanley block now includes an option to specify a dynamic bicycle vehicle
model. Use this model to compute the steering angle of vehicles in highway scenarios or other high-
speed environments.

Path Smoother: Smooth a planned vehicle path
Use the Path Smoother Spline block and smoothPathSpline function to smooth paths that were
planned using a pathPlannerRRT object or other path planner. To generate a smoothed path, the
block and function fit a parametric cubic spline onto the original path. The generated paths are
smooth enough for vehicle controllers to execute.

Code Generation for Path Planning: Generate C/C++ code for vehicle
path planning using MATLAB Coder
These path planning functions and objects now support code generation:

• vehicleDimensions
• inflationCollisionChecker
• vehicleCostmap
• checkFree
• checkOccupied
• getCosts
• setCosts
• pathPlannerRRT
• plan
• driving.Path
• interpolate
• driving.DubinsPathSegment
• driving.ReedsSheppPathSegment
• checkPathValidity
• smoothPathSpline

For information on code generation limitations for any function or object, see its individual reference
page. For a code generation example, see Code Generation for Path Planning and Vehicle Control.

R2019a

9-6

https://www.mathworks.com/help/releases/R2019a/driving/ref/longitudinalcontrollerstanley.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/lateralcontrollerstanley.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathsmootherspline.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/smoothpathspline.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehicledimensions.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.costmap.inflationcollisionchecker.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.checkfree.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.checkoccupied.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.getcosts.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.setcosts.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.plan.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.path.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.path.interpolate.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.dubinspathsegment.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.reedsshepppathsegment.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/checkpathvalidity.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/smoothpathspline.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/code-generation-for-path-planning-and-vehicle-control.html

You can also generate code from these functions and objects in Simulink by using the MATLAB
Function block.

 Planning and Control

9-7

R2018b

Version: 1.3

New Features

Bug Fixes

Compatibility Considerations

10

Ground Truth Labeling

Define multiple custom labels in Ground Truth Labeler connector
You can now synchronize the Ground Truth Labeler app with external labeling tools containing
multiple custom labels. Specify these labels and their descriptions using the LabelName and
LabelDescription properties of the driving.connector.Connector class.

Ground Truth Labeler enhancements
The Ground Truth Labeler app now includes visuals indicating the relationship between the labels
and sublabels of an image. For more details on the label-sublabel relationship, see Use Sublabels and
Attributes to Label Ground Truth Data (Computer Vision System Toolbox).

In addition, in the Label Summary window, you can now navigate between unlabeled frames. For
more details on the Label Summary window, see View Summary of Ground Truth Labels (Computer
Vision System Toolbox).

R2018b

10-2

https://www.mathworks.com/help/releases/R2018b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.connector.connector-class.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018b/vision/ug/use-sublabels-to-label-ground-truth-data.html
https://www.mathworks.com/help/releases/R2018b/vision/ug/use-sublabels-to-label-ground-truth-data.html
https://www.mathworks.com/help/releases/R2018b/vision/ug/view-summary-of-ground-truth-labels.html

Cuboid Scenario Simulation

Bird's-Eye Scope for Simulink: Analyze sensor coverages, detections,
and tracks in your model
The Bird's-Eye Scope displays streaming detections and object tracks from your model on a bird's-
eye plot. You can use the Bird's-Eye Scope to:

• Inspect the coverage areas of radar and vision sensors.
• Analyze the sensor detections of lanes and actors in a driving scenario.
• Analyze the tracks of moving objects.

To get started using the scope, see Visualize Sensor Data and Tracks in Bird's-Eye Scope.

Prebuilt Driving Scenarios: Test driving algorithms using Euro NCAP
and other prebuilt scenarios
In the Driving Scenario Designer app, you can now test that your algorithms comply with ADAS
industry standards by using prebuilt Euro NCAP driving scenarios. These scenarios model multiple
variations of Euro NCAP test procedures for lane keeping assist, automatic emergency braking, and
emergency lane keeping. For more details, see Generate Synthetic Detections from a Euro NCAP
Scenario and the Automatic Emergency Braking with Sensor Fusion example.

In addition to Euro NCAP scenarios, the app includes prebuilt driving scenarios of common driving
maneuvers at intersections. See Generate Synthetic Detections from a Prebuilt Driving Scenario

OpenDRIVE File Import Support: Load OpenDRIVE roads into a driving
scenario
In the Driving Scenario Designer app, you can now include roads built using the OpenDRIVE
format specification. For more details, see Add OpenDRIVE Roads to Driving Scenario.

You can also load these roads into a drivingScenario object by using the roadNetwork function.

Radar Sensor Model Enhancements: Model occlusions in radar sensors
In the radarDetectionGenerator System object, use the HasOcclusion property to generate
detections only from objects for which the radar has a direct line of sight.

Actors follow road elevation and banking angles in Driving Scenario
Designer
In the Driving Scenario Designer app, when you create an actor and specify waypoints for it to
follow, the actor now travels along the elevation angle and banking angle of the road.

 Cuboid Scenario Simulation

10-3

https://www.mathworks.com/help/releases/R2018b/driving/ref/birdseyescope.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/visualize-sensor-data-and-tracks-in-birds-eye-scope.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/generate-synthetic-detections-from-a-euro-ncap-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/generate-synthetic-detections-from-a-euro-ncap-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/autonomous-emergency-braking-with-sensor-fusion.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/generate-synthetic-detections-from-a-prebuilt-driving-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/add-opendrive-roads-to-driving-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenario-class.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html

Functionality being removed or changed
Corrections to Image Width and Image Height camera parameters of Driving Scenario
Designer
Behavior change

Starting in R2018b, in the Camera Settings group of the Driving Scenario Designer app, the
Image Width and Image Height parameters set their expected values. Previously, Image Width
set the height of images produced by the camera, and Image Height set the width of images
produced by the camera.

If you are using R2018a, to produce the expected image sizes, transpose the values set in the Image
Width and Image Height parameters.

R2018b

10-4

https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html

Detection and Tracking

Monocular Camera Parameter Estimation: Configure a monocular
camera by estimating its extrinsic parameters
The estimateMonoCameraParameters function estimates the extrinsic parameters of a monocular
camera that has been calibrated using a checkerboard pattern. For more details, see Calibrate a
Monocular Camera.

Monocular camera setup with fisheye lens example
The Configure Monocular Fisheye Camera example shows how to set up a monocular camera that has
a fisheye lens.

Sensor fusion and tracking examples
The following examples require a Sensor Fusion and Tracking Toolbox license.

• The Extended Object Tracking example shows how to track objects whose dimensions span
multiple sensor resolution cells.

• The Visual-Inertial Odometry Using Synthetic Data example shows how to estimate the pose
(position and orientation) of a vehicle by using an inertial measurement unit (IMU) and a
monocular camera.

 Detection and Tracking

10-5

https://www.mathworks.com/help/releases/R2018b/driving/ref/estimatemonocameraparameters.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/calibrate-a-monocular-camera.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/calibrate-a-monocular-camera.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/configure-monocular-fisheye-camera.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/extended-object-tracking.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/visual-inertial-odometry-using-synthetic-data.html

Planning and Control

Improved Collision Checking in vehicleCostmap Object: Configure
collision checking to plan paths through narrow passages
The inflationCollisionChecker function creates a configuration object that specifies how the
vehicleCostmap object checks for collisions. You can use this collision-checking configuration
object to reduce the amount of obstacle inflation in the costmap. By reducing this inflation amount,
path planning algorithms can plan collision-free paths through narrow passages such as parking
spots.

For compatibility considerations, see InflationRadius and VehicleDimensions properties of
vehicleCostmap object are not recommended.

Kinematic Lateral Controller: Control the steering angle of an
autonomous vehicle
The Lateral Controller Stanley block and lateralControllerStanley function compute the
steering angle of a vehicle using the Stanley method, a kinematic control algorithm. Use this block or
function in a closed-loop simulation to adjust the steering angle of a vehicle as it follows a path. To
learn more, see Lateral Control Tutorial.

Obtain transition poses and direction changes from a planned path
The driving.Path object returned by pathPlannerRRT now contains more specific descriptions of
path segments, including their motion lengths, motion directions, and motion types (Dubins or Reeds-
Shepp). Use the interpolate function to sample poses along the path, including transition poses,
and to return changes in direction. You can then use these sampled poses and direction changes to
develop a path smoothing algorithm.

For compatibility considerations, see connectingPoses function and driving.Path object
properties KeyPoses and NumSegments are not recommended.

Functionality being removed or changed
InflationRadius and VehicleDimensions properties of vehicleCostmap object are not
recommended
Still runs

The InflationRadius and VehicleDimensions properties of vehicleCostmap are not
recommended. Instead:

1 Use the inflationCollisionChecker function to create an InflationCollisionChecker
object, which has the properties InflationRadius and VehicleDimensions.

2 Specify this object as the value of the CollisionChecker property of vehicleCostmap.

There are no current plans to remove the InflationRadius and VehicleDimensions properties
of vehicleCostmap. If you do specify these properties, the values in the corresponding properties of
CollisionChecker are updated to match.

R2018b

10-6

https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.costmap.inflationcollisionchecker.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2018b/driving/release-notes.html#mw_eaf8b026-fbe4-4dbc-b5e8-1e842c515262
https://www.mathworks.com/help/releases/R2018b/driving/release-notes.html#mw_eaf8b026-fbe4-4dbc-b5e8-1e842c515262
https://www.mathworks.com/help/releases/R2018b/driving/ref/lateralcontrollerstanley.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/lateralcontrollerstanleyfunction.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/lateral-control-tutorial.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.interpolate.html
https://www.mathworks.com/help/releases/R2018b/driving/release-notes.html#mw_6c07f5df-96ed-4db0-b979-2eb5c0d68f75
https://www.mathworks.com/help/releases/R2018b/driving/release-notes.html#mw_6c07f5df-96ed-4db0-b979-2eb5c0d68f75
https://www.mathworks.com/help/releases/R2018b/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.costmap.inflationcollisionchecker.html

When the vehicleCostmap object was introduced in R2018a, this object inflated obstacles based on
the specified inflation radius and vehicle dimensions only. The InflationCollisionChecker
object, which is specified in the CollisionChecker property of vehicleCostmap, provides
additional configuration options for inflating obstacles. For example, you can specify the number of
circles used to represent the vehicle shape, enabling more precise collision checking.

Update Code

The table shows a typical usage of the InflationRadius and VehicleDimensions properties of
vehicleCostmap. It also shows how to update your code using the corresponding properties of an
InflationCollisionChecker object.

Discouraged Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
 'VehicleDimensions',vehicleDims, ...
 'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
 'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
 'CollisionChecker',ccConfig);

connectingPoses function and driving.Path object properties KeyPoses and NumSegments
are not recommended
Still runs

The connectingPoses function and the KeyPoses and NumSegments properties of the
driving.Path object are not recommended. Instead, use the interpolate function, which returns
key poses, connecting poses, transition poses, and direction changes. The KeyPoses and
NumSegments properties are no longer relevant. KeyPoses, NumSegments, and connectingPoses
will be removed in a future release.

In R2018a, connectingPoses enabled you to obtain intermediate poses either along the entire path
or along the path segments that are between key poses (as specified by KeyPoses). Using the
interpolate function, you can now obtain intermediate poses at any specified point along the path.
The interpolate function also provides transition poses at which changes in direction occur.

Update Code

Remove all instances of KeyPoses and NumSegments and replace all instances of
connectingPoses with interpolate. The table shows typical usages of connectingPoses and
how to update your code to use interpolate instead. Here, path is a driving.Path object
returned by pathPlannerRRT.

Discouraged Usage Recommended Replacement
poses = connectingPoses(path); poses = interpolate(path);
segID = 1;
posesSegment = connectingPoses(path,segID);

interpolate does not have a direct syntax for
obtaining segment poses. However, you can
sample poses of a segment using a specified step
time. For example:

step = 0.1;
samples = 0 : step : path.PathSegments(1).Length;
segmentPoses = interpolate(path,samples);

 Planning and Control

10-7

https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.connectingposes.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.interpolate.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/pathplannerrrt.html

R2018a

Version: 1.2

New Features

Compatibility Considerations

11

Ground Truth Labeling

Ground Truth Pixel Labeling: Interactively label individual pixels in
video data
In the Ground Truth Labeler app, you can now interactively label individual pixels in video data for
training semantic segmentation algorithms. You can also automate the labeling. See Automate
Ground Truth Labeling for Semantic Segmentation.

Ground Truth Label Attributes: Organize and classify ground truth
labels using attributes and sublabels
In the Ground Truth Labeler app, you can now attach attributes to labels and create hierarchical
sublabels. For more details, see Define Ground Truth Data for Video or Image Sequences.

R2018a

11-2

https://www.mathworks.com/help/releases/R2018a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018a/driving/examples/automate-ground-truth-labeling-for-semantic-segmentation.html
https://www.mathworks.com/help/releases/R2018a/driving/examples/automate-ground-truth-labeling-for-semantic-segmentation.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018a/driving/ug/define-ground-truth-data-for-video-or-image-sequences.html

Cuboid Scenario Simulation

Driving Scenario Designer: Interactively define actors and driving
scenarios to test controllers and sensor fusion algorithms
Use the Driving Scenario Designer app to design a synthetic driving scenario composed of roads
and actors (vehicles, pedestrians, and so on). You can generate visual and radar detections of actors
in the scenario to test your sensor fusion and control algorithms. To learn how to generate detections,
see Generate Synthetic Detections from an Interactive Driving Scenario.

Add and detect lanes in Driving Scenario
You can add lane markings to roads in a driving scenario simulation using the new lane marking
function, laneMarking, and lane specification function, lanespec. The driving scenario road
method accepts a lane specification as an input. To plot lane markings in birdsEyePlot, use
laneMarkingPlotter and plotLaneMarking.

In addition, the vision detection generator System object, visionDetectionGenerator, can now
detect lanes in a driving scenario simulation. The corresponding Simulink block, Vision Detection
Generator, can also detect lanes.

Path method being removed
The path method of the actor and vehicle classes is being removed. Use the trajectory method
instead.

Compatibility Considerations
Functionality Result Use Instead Compatibility

Considerations
path method Still runs trajectory method Replace all instances of

path with
trajectory. The path
syntax which assumes a
default speed does not
exist in trajectory.
You must specify a
speed input argument.

 Cuboid Scenario Simulation

11-3

https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2018a/driving/ug/generate-synthetic-detections-from-an-interactive-driving-scenario.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/lanemarking-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/lanespec-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/birdseyeplot.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/lanemarkingplotter.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/plotlanemarking.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/visiondetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/path.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/trajectory.html

Detection and Tracking

Lidar Segmentation: Quickly segment 3-D point clouds from lidar
Use the segmentLidarData function to segment organized point clouds into clusters.

Point Cloud Reader for Velodyne PCAP Files: Import Velodyne lidar
data into MATLAB
Use a velodyneFileReader object to read point cloud data from Velodyne packet capture (PCAP)
files.

Detect lanes more precisely by using third-degree polynomial lane
boundary models
Use the cubicLaneBoundary and findCubicLaneBoundaries functions to create and find lane
boundaries using third-degree polynomial models. You can display detected lanes on a bird's-eye-view
plot, and overlay the lane markings onto images, by using the insertLaneBoundary function.

Transform [x,y,z] locations in vehicle coordinates to image
coordinates
The vehicleToImage method of monoCamera now accepts three-dimensional [x,y,z] point
coordinates. Previously, vehicleToImage accepted only [x,y] coordinates. By transforming [x,y,z]
locations in vehicle coordinates, you can display point locations above the road surface.

Direction of Yaw Angle Rotation Adjusted
The monoCamera function was updated to correct the direction of rotation for the yaw angle.

Compatibility Considerations
Functionality Compatibility Considerations
monoCamera function If you are using R2017b version of this function,

you must multiply the yaw angle by -1.

R2018a

11-4

https://www.mathworks.com/help/releases/R2018a/driving/ref/segmentlidardata.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/velodynefilereader.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/cubiclaneboundary.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/findcubiclaneboundaries.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/insertlaneboundary.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera.vehicletoimage.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera.vehicletoimage.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera-class.html

Localization and Mapping

Streaming Geographic Map Display: Visualize a geographic route on a
map
Use the geoplayer function to create an interactive map that displays the streaming geographic
coordinates of a driving route.

 Localization and Mapping

11-5

https://www.mathworks.com/help/releases/R2018a/driving/ref/geoplayer.html

Planning and Control

Path Planning: Plan driving paths using an RRT* path planner and
costmap
Use the pathPlannerRRT, vehicleCostmap, and checkPathValidity functions to plan a driving
path by using an optimal rapidly exploring random tree (RRT*) motion-planning algorithm. To learn
how to use these functions to plan a path, see the Automated Parking Valet example.

R2018a

11-6

https://www.mathworks.com/help/releases/R2018a/driving/ref/rrtpathplanner.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/checkpathvalidity.html
https://www.mathworks.com/help/releases/R2018a/driving/examples/automated-parking-valet.html

Applications

ACC Reference Application: Use a reference model to simulate and
test adaptive cruise controller (ACC) systems
The ACC reference application is a model of an ACC system implemented using sensor fusion. Use
this model to design your own ACC system, test it in Simulink using synthetic radar and vision data
generated by Automated Driving System Toolbox™ blocks, and automatically generate C code. To
learn more, see Adaptive Cruise Control with Sensor Fusion.

 Applications

11-7

https://www.mathworks.com/help/releases/R2018a/driving/examples/adaptive-cruise-control-with-sensor-fusion.html

R2017b

Version: 1.1

New Features

12

Ground Truth Labeling

Ground Truth Labeling App: Reverse playback capability while
processing algorithms
In the Ground Truth Labeler app, you can now process the video in reverse using the automation
algorithm. You can also now dock and undock the Visual Summary display.

R2017b

12-2

https://www.mathworks.com/help/releases/R2017b/driving/ref/groundtruthlabeler-app.html

Cuboid Scenario Simulation

Sensor Simulation Using Simulink Blocks: Generate synthetic object
lists from camera and radar sensor models
Use the Radar Detection Generator and the Vision Detection Generator blocks to generate synthetic
detections for testing and design of your sensor fusion and tracking algorithms

Code Generation for Sensor Models: Generate C code for camera and
radar sensor models
Use the radarDetectionGenerator and visionDetectionGenerator System objects to
generate C code to generate synthetic sensor detection object lists.

 Cuboid Scenario Simulation

12-3

https://www.mathworks.com/help/releases/R2017b/driving/ref/radardetectiongenerator.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/visiondetectiongenerator-system-object.html

Detection and Tracking

Sensor Fusion Simulink Blocks: Track multiple objects and fuse
detections from multiple sensors
Use the Detection Concatenation block and the Multi Object Tracker block to fuse and track objects
detected by multiple sensors.

R2017b

12-4

https://www.mathworks.com/help/releases/R2017b/driving/ref/detectionconcatenation.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/multiobjecttracker.html

Applications

Autonomous Driving Examples
• Sensor Fusion Using Synthetic Radar and Vision Data
• Adaptive Cruise Control with Sensor Fusion
• Evaluate and Visualize Lane Boundary Detections Against Ground Truth
• Radar Signal Simulation and Processing for Automated Driving

 Applications

12-5

https://www.mathworks.com/help/releases/R2017b/driving/examples/sensor-fusion-using-synthetic-radar-and-vision-data-2.html
https://www.mathworks.com/help/releases/R2017b/driving/examples/adaptive-cruise-control-with-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017b/driving/examples/evaluate-and-visualize-lane-boundary-detections-against-ground-truth.html
https://www.mathworks.com/help/releases/R2017b/driving/examples/radar-signal-simulation-and-processing-for-automated-driving.html

R2017a

Version: 1.0

New Features

13

Ground Truth Labeling

Ground Truth Labeling
The Ground Truth Labeler app enables you to label ground truth data in a video or in a sequence of
images. Use the app to interactively specify rectangular and polyline regions of interest (ROIs), and
scene labels. You can export marked labels from the app and use them to train an object detector or
to compare against ground truth data. The app includes computer vision algorithms to automate the
labeling of ground truth by using detection and tracking algorithms. It also provides an API and
workflow that enables you to import your own algorithms to automate the labeling of ground truth.
You can also use the driving.connector.Connector API to display additional time-synchronized
signals, such as lidar or CAN bus data.

Ground Truth Labeling Utilities Description
Ground Truth Labeler App for labeling ground truth data in a video or

sequence of images
groundTruth Object for storing ground truth labels
groundTruthDataSource Create a ground truth data source
objectDetectorTrainingData Create training data from ground truth data for

an object detector
driving.automation.AutomationAlgorithm Define automated labeling algorithm in the

Ground Truth Labeler app
driving.connector.Connector Interface to connect an external tool to the

Ground Truth Labeler app
evaluateLaneBoundaries Evaluate lane boundary models against ground

truth

R2017a

13-2

https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/driving.connector.connector-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruth-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruthdatasource-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetectortrainingdata.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/driving.automation.automationalgorithm-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/driving.connector.connector-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/evaluatelaneboundaries.html

Cuboid Scenario Simulation

Bird’s-Eye Plot
Use birdsEyePlot to display a bird's-eye plot of a 2-D scene in the immediate vicinity of a vehicle.
You can use bird's-eye plots with sensors capable of detecting objects and lanes.

Driving Scenario Generation and Sensor Models
The drivingScenario class defines road networks, vehicles, and traffic scenarios. A driving
scenario is a 3-D arena containing roads and actors. Actors can represent anything that moves, such
as cars, pedestrians, and bicycles. Actors can also include stationary obstacles that can influence the
motion of other actors. You can use radarDetectionGenerator and the
visionDetectionGenerator to create statistical models for generating synthetic radar and
camera sensor detections.

 Cuboid Scenario Simulation

13-3

https://www.mathworks.com/help/releases/R2017a/driving/ref/birdseyeplot-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/drivingscenario-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/radardetectiongenerator-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/visiondetectiongenerator-class.html

Detection and Tracking

Monocular Camera Sensor Configuration
Use the monoCamera object to define your monocular camera configuration. You can use this object
to convert locations between vehicle and image coordinate systems. You can also use birdsEyeView
with the monoCamera object to create a bird’s-eye-view image.

Object and Lane Boundary Detection
Detect objects using machine learning techniques, including deep learning. You can also segment,
detect, and model parabolic lane boundaries using RANSAC. Configure object detectors to detect
objects of a known physical size using the configureDetectorMonoCamera function.

Object Detection

• vehicleDetectorACF
• vehicleDetectorFasterRCNN
• peopleDetectorACF
• configureDetectorMonoCamera
• acfObjectDetectorMonoCamera
• objectDetectorTrainingData
• fastRCNNObjectDetectorMonoCamera
• fasterRCNNObjectDetectorMonoCamera

Lane Boundary Detection

• segmentLaneMarkerRidge
• findParabolicLaneBoundaries
• parabolicLaneBoundary
• insertLaneBoundary
• evaluateLaneBoundaries
• fitPolynomialRANSAC
• ransac

Multi-object Tracking
You can create a multi-object tracker for sensor fusion. The tracker uses Kalman filters for estimating
the state of motion of an object. Measurements made on the object let you continuously solve for the
object's position and velocity. You can use constant-velocity or constant-acceleration motion models,
or define your own models.

• multiObjectTracker
• objectDetection
• getTrackPositions
• getTrackVelocities

R2017a

13-4

https://www.mathworks.com/help/releases/R2017a/driving/ref/monocamera-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/birdseyeview-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/vehicledetectoracf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/vehicledetectorfasterrcnn.html
https://www.mathworks.com/help/releases/R2017a/vision/ref/peopledetectoracf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/acfobjectdetectormonocamera-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetectortrainingdata.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/fastrcnnobjectdetectormonocamera-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/fasterrcnnobjectdetectormonocamera-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/segmentlanemarkerridge.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/findparaboliclaneboundaries.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/paraboliclaneboundary-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/insertlaneboundary.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/evaluatelaneboundaries.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/fitpolynomialransac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/ransac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/multiobjecttracker-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetection-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackpositions.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackvelocities.html

• trackingKF
• trackingEKF
• trackingUKF

 Detection and Tracking

13-5

https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingkf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingekf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingukf-class.html

Applications

Automated Driving Examples
The release of Automated Driving System Toolbox includes the following examples.

Reference Applications
Visual Perception Using Monocular Camera
Forward Collision Warning Using Sensor Fusion
Sensor Fusion Using Synthetic Radar and Vision Data

Tracking and Sensor Fusion
Forward Collision Warning Using Sensor Fusion
Track Multiple Vehicles Using a Camera
Track Pedestrians from a Moving Car
Multiple Object Tracking Tutorial
Code Generation for Tracking and Sensor Fusion

Perception with Computer Vision
Visual Perception Using Monocular Camera
Ground Plane and Obstacle Detection Using Lidar
Train a Deep Learning Vehicle Detector

Algorithm Validation and Visualization
Automate Ground Truth Labeling of Lane Boundaries
Annotate Video Using Detections in Vehicle Coordinates
Visualize Sensor Coverage, Detections, and Tracks
Evaluate Lane Boundary Detections Against Ground Truth Data

Scenario Generation
Sensor Fusion Using Synthetic Radar and Vision Data
Driving Scenario Tutorial
Define Road Layouts
Create Actor and Vehicle Paths
Model Radar Sensor Detections
Model Vision Sensor Detections

R2017a

13-6

https://www.mathworks.com/help/releases/R2017a/driving/examples/visual-perception-using-monocular-camera.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/forward-collision-warning-using-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/sensor-fusion-using-synthetic-radar-and-vision-data.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/forward-collision-warning-using-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/track-multiple-vehicles-using-a-camera.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/track-pedestrians-from-a-moving-car.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/multiple-object-tracking-tutorial.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/code-generation-for-tracking-and-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/visual-perception-using-monocular-camera.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/ground-plane-and-obstacle-detection-using-lidar.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/train-a-deep-learning-vehicle-detector.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/automate-ground-truth-labeling-of-lane-boundaries.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/annotate-video-using-detections-in-vehicle-coordinates.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/visualize-sensor-coverage-detections-and-tracks.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/evaluate-lane-boundary-detections-against-ground-truth-data.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/sensor-fusion-using-synthetic-radar-and-vision-data.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/driving-scenario-tutorial.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/define-road-layouts.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/create-actor-and-vehicle-paths.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/model-radar-sensor-detections.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/model-vision-sensor-detections.html

	R2023a
	Ground Truth Labeling
	Labeler Enhancements: Point ROI label definition support

	Cuboid Scenario Simulation
	Sensors in Driving Scenario: Add sensors to driving scenario and get target poses with respect to host actors using MATLAB functions
	Driving Scenario to RoadRunner: Export RoadRunner HD Map from driving scenario for Euro NCAP-like scenes
	ASAM OpenDRIVE Import Enhancements: Import geographic reference of road network data

	Unreal Engine Scenario Simulation
	Simulation 3D Environment Upgrade: Run 3D simulations using Unreal Engine 4.27
	Simulation 3D Ultrasonic Array Block: Generate synthetic range measurements in Unreal Engine scenarios with tunable acoustic parameters
	Custom Top-Down Visualization Example: Create a custom top-down view of an Unreal Engine scene in Simulink

	RoadRunner Scenario Simulation
	Sensor Simulation for RoadRunner Scenario: Simulate RoadRunner Scenario with sensor models defined in MATLAB
	Sensor Simulation for RoadRunner Scenario: Simulate RoadRunner Scenario with sensor models defined in Simulink
	Offline Playback of RoadRunner Scenario Simulation: Replay simulation from saved file
	User-Defined Events: Use custom events to control a RoadRunner Scenario simulation or enable communication between actors
	Access lane location of all actors in a RoadRunner Scenario simulation using MATLAB or Simulink
	Coordinate Reference Systems: Read RoadRunner HD map using readCRS function
	Functionality being removed or changed

	Scenario Generation and Variation
	Scenario Builder Enhancements and Examples: Track lane boundaries, store lane data, store actor track list data, other feature improvements, and new examples
	Variant Generator Enhancements and Examples: Obtain collision information feature, and new example

	Detection and Tracking
	YOLO v3 Object Detection: Detect objects in monocular camera images using you only look once version 3 (YOLO v3) deep learning network

	Localization and Mapping
	HERE HD Live Map Data: Set default basemap for visualizations of HERE HD Live Map layer data

	Planning and Control
	Path Planning Using Lidar Map: Plan reference path for autonomous vehicle navigation
	Lane-Level Path Planning: Design lane-level path planner in MATLAB and simulate with RoadRunner Scenario

	Applications
	Truck Platooning Application: Cosimulate platooning application with RoadRunner Scenario and Simulink
	Autonomous Emergency Braking: Design and simulate autonomous emergency braking (AEB) system with high-fidelity vehicle dynamics
	Highway Lane Following Example Enhancements: Compute performance metrics for different components of lane-following system

	R2022b
	Ground Truth Labeling
	Labeler Enhancements: 3D line ROI labels for point clouds
	Functionality being removed or changed

	File I/O
	ADTF File Reader Enhancements: Read new stream types, sample and chunk timestamps for streams

	Cuboid Scenario Simulation
	Ultrasonic Detection Generator Block: Generate synthetic range measurements in driving scenarios in Simulink
	Bird's-Eye Scope Enhancements: Visualize ultrasonic sensor detections
	ASAM OpenDRIVE Import Enhancements: Import multiple lane specifications and road heading angle information
	ASAM OpenDRIVE Export Enhancements: Export multiple lane specifications for a road with single-lane road segment

	Unreal Engine Scenario Simulation
	Simulation 3D Ultrasonic Sensor Block: Generate synthetic range measurements in Unreal Engine scenarios
	Simulation 3D Pedestrian Block: Model a pedestrian in Unreal Engine scenarios
	Simulation 3D Bicyclist Block: Model a bicyclist in Unreal Engine scenarios
	Simulation 3D Scene Configuration: Use new MATLAB API to download maps locally from the server
	Simulation 3D Scene Configuration Block: Specify ASAM OpenDRIVE file for lane detections
	Functionality being removed or changed

	RoadRunner Scenario Simulation
	High-Definition Maps: Import map data into RoadRunner using MATLAB functions
	getAction Function Enhancements: Retrieve longitudinal distance action of actor
	getAttribute Function Enhancements: Retrieve child or parent actors from actor group
	RoadRunner Scenario Writer Block: Update all child actors of actor group in RoadRunner Scenario from Simulink
	User-Defined Actions: Read and process user-defined actions from RoadRunner Scenario using MATLAB functions
	User-Defined Actions: Read and process user-defined actions from RoadRunner Scenario using Simulink behavior model
	Timeout value: Set timeout value for connection between MATLAB and RoadRunner Scenario
	Application Examples: Simulate autonomous emergency braking and highway lane following applications with RoadRunner Scenario

	Scenario Generation and Variation
	Scenario Builder: Scenario Builder for Automated Driving Toolbox support package
	Variant Generator: Scenario Variant Generator for Automated Driving Toolbox support package

	Detection and Tracking
	Monocamera Parameter Estimation: Estimate monocular camera parameters using the road image and scene geometry
	3D Cuboid Computation: Compute 3D cuboids from 2D projected cuboids and camera parameters
	Multi-Object Tracker Enhancements: Confirm tracks directly, and obtain position, velocity, and covariance from tracks using motion model name input
	Obtain position, velocity, and covariance from tracks using motion model name input

	Applications
	Truck Platooning Example: Design and simulate platooning application using V2V communication
	PIL Testing Example: Automate processor-in-the-loop testing of forward vehicle sensor fusion algorithm
	Scenario Variants of AEB System Example: Automate testing of AEB system using variants of Euro NCAP test scenario

	R2022a
	Ground Truth Labeling
	Labeler Enhancements: 3D line ROI labels for point clouds

	File I/O
	ADTF File Reader: Read data from Automotive Data and Time-Triggered Framework (ADTF) DAT file

	Cuboid Scenario Simulation
	Ultrasonic Sensor Model: Generate synthetic range measurements from programmatic driving scenarios and Driving Scenario Designer app
	Bird's-Eye Scope Enhancement: Run simulations from previously saved models without finding signals again
	Radar Sensor Performance Enhancement: Simulate driving scenarios with radar sensors faster in MATLAB and Simulink
	ASAM OpenSCENARIO Export Enhancements: Export road networks, actors, and trajectories to ASAM OpenSCENARIO file version 1.1
	Sharp Curvature Roads: Create or import roads with sharp curvature
	Road Group Enhancements: Import heading angle information of road groups into the Driving Scenario Designer app
	Ego Localization Example: Correct ego vehicle localization using recorded sensor data

	Unreal Engine Scenario Simulation
	Simulation 3D Lidar Reflectivity: Model surface reflections in Unreal Engine environment
	OpenCV Radial Distortion in Simulation 3D Camera Block: Simulate cameras with OpenCV supported radial distortion model in Unreal Engine Environment
	Simulation 3D Camera Performance Improvements: Run cameras at improved speeds during Unreal Engine simulation
	Simulation 3D Environment Upgrade: Run 3D simulations using Unreal Engine 4.26
	Functionality being removed or changed

	RoadRunner Scenario Simulation
	Simulate RoadRunner scenarios with MATLAB and Simulink
	MATLAB Functions for RoadRunner Scenes and Scenarios: Import and export RoadRunner scenes and scenarios programmatically

	Detection and Tracking
	YOLO v4 Object Detection: Detect objects in monocular camera images using you only look once version 4 (YOLO v4) deep learning network
	Bird's-Eye View Example Update: Generate code for algorithm to create 360° bird's-eye-view image around a vehicle
	PIL Verification of JPDA Tracker Example: Generate embedded code and perform processor-in-loop (PIL) verification of JPDA tracker in highway scenarios
	Functionality being removed or changed

	Localization and Mapping
	Parking Spot Detection Example: Detect empty parking spots in a parking lot using semantic segmentation
	LOAM Example: Build map and localize using Lidar Odometry and Mapping (LOAM)
	Point Cloud Localization Example Update: Localize with a prebuilt map using NDT algorithm
	Visual SLAM Example Update: Reconstruct a parking lot from stereo images using visual SLAM

	Applications
	Intersection Navigation Examples: Use V2V and V2X communication technologies to build applications for safe navigation through intersections
	Autonomous Emergency Braking Examples: Integrate high fidelity vehicle dynamics model with autonomous emergency braking (AEB) system and automate testing of AEB system
	Real-Time Testing Example: Deploy and test forward vehicle sensor fusion component in real-time
	Highway Lane Change Example Update: Integrate surround vehicle sensor fusion with highway lane change system

	R2021b
	Ground Truth Labeling
	Labeler Enhancements: Edit cuboid ROI labels more easily in top, side, and front 2-D view projections, segment ground from lidar data using SMRF algorithm
	Velodyne Lidar Sources: Load data from Velodyne VLS-128 lidar device into Ground Truth Labeler app

	Cuboid Scenario Simulation
	Parking Lots: Add parking lots to driving scenarios programmatically
	ASAM OpenDRIVE Import Enhancements: Import a road network using OpenDRIVE file version V1.5 and ASAM OpenDRIVE V1.6
	ASAM OpenDRIVE Export Enhancements: Export a road network to OpenDRIVE file version V1.5 and ASAM OpenDRIVE V1.6
	ASAM OpenSCENARIO Export Enhancements: Export the routes of actors using instances of Trajectory element
	Scenario Reader Block: Obtain position, velocity, orientation, and acceleration information from Ego Vehicle State port
	INS Block: Generate synthetic readings from an inertial navigation and GPS sensor in driving scenarios in Simulink
	Road Heading Angles: Create more precise roads using fewer road centers
	Lane Generation Example: Add lane information to map imported road network
	Scenario Generation Examples: Generate scenario from recorded sensor data and scenario variants from seed scenario

	Unreal Engine Scenario Simulation
	Unreal Engine Environment Upgrade: Run 3D simulations using Unreal Engine, Version 4.25
	Position Adjustments of Unreal Engine Cameras: Update relative translation and rotation of camera sensors during simulation
	Unreal Engine Environment Performance Improvements: Run 3D simulations faster than real-time
	Unreal Engine Visualization Example: Visualize logged data for post-simulation analysis

	Detection and Tracking
	Perturbations: Perturb object properties using truncated normal distribution
	Code Generation: Generate more memory-efficient C/C++ code from trackers and tracking filters
	Radar and Tracking Examples: Fuse radar and camera tracks, track using event-based sensor fusion and retrodiction and track in scenarios with multipath radar reflections in Simulink
	Track moving vehicles with multiple lidar sensors using a grid-based tracker in Simulink
	Perform dynamic replanning on highways using tracking in MATLAB

	Localization and Mapping
	Visual Localization Example: Develop and evaluate a visual localization algorithm in a parking lot scenario
	Segment Matching Example: Build Map and Localize Using Segment Matching

	Applications
	Message-Based Communication: Establish message-based communication between model components
	Real-Time Testing: Deploy and test highway lane following controller in real-time
	Automate Testing: Automate testing of components of lane following and lane changing systems

	R2021a
	Ground Truth Labeling
	Labeler Enhancements: Label object instances for semantic segmentation, automate labeling of multiple signals simultaneously, and additional features

	File I/O
	Ibeo File Reader: Read sensor data from Ibeo data container (IDC) files

	Cuboid Scenario Simulation
	ASAM OpenSCENARIO Export: Share a driving scenario using the ASAM OpenSCENARIO 1.0 format
	Driving Scenario Import: Create driving scenarios with road data imported from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service
	INS Sensor Model: Generate synthetic readings from an inertial navigation and GPS sensor in driving scenarios
	Barriers: Add guardrails and Jersey barriers to driving scenarios
	Radar Data Generator: Generate synthetic sensor detections and tracks from a driving scenario
	Driving Scenario Enhancements: Select multiple actors, align and distribute actors, and additional features
	HERE HD Live Map Scenario Enhancements: Generate road networks with junctions and specifications for multiple lanes along a single road
	Multiple Lane Specifications: Add or drop lanes along a road
	Road Groups: Define road intersections
	OpenDRIVE Export Enhancements: Export actors to OpenDRIVE format
	Functionality being removed or changed

	Unreal Engine Scenario Simulation
	Unreal Engine Vehicle Enhancements: Import custom meshes and control vehicle lights
	Unreal Engine Scene Environment: Control weather and sun position

	Detection and Tracking
	Out-of-Sequence Measurements Handling: Ignore out-of-sequence measurements of object tracks, or terminate tracking when one is encountered
	Bird's-Eye View Example: Create a 360° bird's-eye-view image around a vehicle
	Radar and Tracking Examples: Process radar multipath detections, simulate radar ghosts from multipath detections, and fuse lidar and radar tracks in Simulink

	Localization and Mapping
	Localization and Mapping Examples: Build an occupancy map from lidar data using SLAM, develop a stereo visual SLAM algorithm, and perform localization using HD map traffic data
	Functionality being removed or changed

	Planning and Control
	Motion Planning Example: Plan a path through an urban environment using a dynamic occupancy grid map

	Applications
	Automated Driving Reference Applications: Examples on vehicle sensor fusion, and code generation of vehicle detector, lane following controller, and lane change planner

	R2020b
	Ground Truth Labeling
	Labeler Enhancements: Label objects in images and video using projected 3-D bounding boxes, load custom image formats, use additional keyboard shortcuts, and more

	Cuboid Scenario Simulation
	Reverse Motion in Driving Scenarios: Simulate driving maneuvers such as backing into parking spots
	OpenStreetMap Roads: Create driving scenarios using road data imported from the OpenStreetMap web service
	OpenDRIVE Export: Share a driving scenario using the OpenDRIVE format
	Lidar Sensor Model Extensions: Generate synthetic point clouds from scenarios in Driving Scenario Designer app and in Simulink
	Driving Scenario Enhancements: Rotate actors interactively, specify yaw angles with trajectories, and additional features
	Scenario Generation Example: Automate scenario generation for driving applications
	Driving Scenario Performance: Improved performance when simulating scenarios with large numbers of actors

	Unreal Engine Scenario Simulation
	Simulation 3D Vision Detection Generator Block: Generate synthetic object and lane boundary detections from the Unreal Engine simulation environment
	Unreal Engine Camera Views: Visualize vehicle acceleration, pitch, and roll with improved camera controls and other usability improvements

	Detection and Tracking
	Tracking Examples: Perform grid-based tracking, track multiple lane boundaries, and generate code for track-level fusion
	Functionality being removed or changed

	Localization and Mapping
	Localization Examples: Develop lidar and visual SLAM algorithms for navigation using the Unreal Engine simulation environment
	HERE HD Live Map Marketplace Support: Read and visualize high-definition map data from the HERE HD Live Map Marketplace service
	HERE HD Live Map Localization Layers: Read localization data such as barriers, signs, and poles from a road network
	Functionality being removed or changed

	Planning and Control
	Trajectory Planning Example: Plan a vehicle trajectory through highway traffic
	Functionality being removed or changed

	Applications
	Automated Driving Reference Applications: Lane following with intelligent vehicles, lane following with RoadRunner scenes, traffic light negotiation with Unreal Engine, and code generation for lane marker detection

	R2020a
	Ground Truth Labeling
	Multisignal Ground Truth Labeling: Label multiple lidar and video signals simultaneously
	Lidar Labeling: Label lidar point clouds to train deep learning models
	Ground Truth Labeler Enhancements: Rename scene labels, select ROI color, and configure ROI label name display

	Cuboid Scenario Simulation
	Lidar Sensor Model: Generate synthetic point clouds from programmatic driving scenarios
	Bird's-Eye Scope Enhancements: Visualize radar and lidar data from 3D simulation sensors, and visualize actors from custom blocks
	HERE HD Live Map Roads in Scenarios: Create driving scenarios using imported road data from high-definition geographic maps
	Scenario Coordinate Transformation Blocks: Convert between vehicle and world coordinates in driving scenarios, and convert between cuboid and 3D simulation coordinates
	Programmatic Sensor Import: Read programmatically created radar and vision sensors into the Driving Scenario Designer app
	Custom Actor Colors: Specify the colors of actors in a driving scenario
	Ego Vehicle Ground Following: Orient the ego vehicle to follow the road surface elevation in closed-loop simulations
	Rear-Facing Lane Detections: Detect lane boundaries from rear-facing cameras in driving scenarios
	Road Interactions in Scenarios: Control the ability to modify roads in driving scenarios
	Cuboid Versions of 3D Simulation Scenes: Build scenarios in the Driving Scenario Designer app for use in a 3D simulation environment
	laneMarking Function Enhancements: Define lane marking with multiple marker styles
	trajectory Function Enhancements: Pause actors at a waypoint
	Driving Scenario Designer App Enhancements: Add composite lane markings and wait times
	Driving Scenarios: Improved performance when creating road networks and actor trajectories

	Unreal Engine Scenario Simulation
	3D Scene Customization: Simulate driving scenarios in a 3D environment using scenes created in the Unreal Editor
	3D Display for Cuboid Simulations: Visualize scenarios in a 3D environment from the Driving Scenario Designer app
	Headless Mode: Run 3D simulations more quickly by not opening the Unreal Engine visualization window
	3D Simulation Version Upgrade: Run 3D simulations using Unreal Engine, Version 4.23
	Box Truck Vehicle Type: Simulate vehicles with the dimensions of a box truck in the 3D simulation environment
	Functionality being removed or changed

	Detection and Tracking
	YOLO v2 Vehicle Detection: Detect vehicles using a vehicle detector pretrained by a you-only-look-once (YOLO) v2 network
	SSD Object Detection: Detect objects in monocular camera images using the single shot multibox detector (SSD) algorithm
	Multiple-Object Tracking Enhancements: Initialize, confirm, and delete tracks, and predict track states at specified times
	Track History Logic: Confirm and delete tracks based on recent track history
	Alpha-Beta Estimation Filter: Track objects using a linear motion and measurement models
	Code Generation: Generate C/C++ code using MATLAB Coder
	Tracking Examples: Fuse radar and lidar tracks, perform track-to-track fusion in Simulink, and track vehicles using lidar in Simulink
	Functionality being removed or changed

	Localization and Mapping
	Geographic Coordinate Transformations: Convert between geographic and local coordinates
	Multiroute Geographic Map Display: Simultaneously stream geographic coordinates from multiple driving routes
	Lidar SLAM Examples: Build a map from lidar data using a simultaneous localization and mapping algorithm

	Planning and Control
	Quaternions: Represent orientation and rotations efficiently for localization

	Applications
	Automated Driving Reference Applications: Simulate highway lane following, highway lane change, and traffic light negotiation systems

	R2019b
	Ground Truth Labeling
	Ground Truth Labeling Enhancements: Copy and paste pixel labels, improved pan and zoom, and improved frame navigation
	Lane Boundary Detection Algorithm: Automate the labeling of lane boundaries using the Ground Truth Labeler

	Cuboid Scenario Simulation
	drivingScenario Import: Read programmatically created driving scenarios into the Driving Scenario Designer app and Simulink
	Driving Scenario Designer Export to Simulink: Generate Simulink models of driving scenarios and sensors
	drivingScenario Enhancements: Create roads with driving, parking, border, shoulder, and restricted lanes
	roadNetwork Enhancements: Import additional lane types of OpenDRIVE roads into a driving scenario
	Bird's-Eye Scope World Coordinates View: Visualize scenarios in world coordinates

	Unreal Engine Scenario Simulation
	3D Simulation: Develop, test, and verify driving algorithms in a 3D simulation environment rendered using the Unreal Engine from Epic Games

	Detection and Tracking
	Track-to-Track Fusion Example: Fuse tracks from multiple vehicles to increase automotive safety (requires Sensor Fusion and Tracking Toolbox)
	YOLO v2 Acceleration: Acceleration support for YOLO v2 object detection
	Code Generation: Generate C/C++ code using MATLAB Coder

	Localization and Mapping
	Lidar Example: Build a map from lidar data
	HERE HD Live Map Linux Support: Read and visualize high-definition map data on Linux machines

	Planning and Control
	Velocity Profiler: Generate the velocity profile of a driving path given kinematic constraints
	Functionality being removed or changed

	R2019a
	Ground Truth Labeling
	Ground Truth Labeling: Organize labels by logical groups, use assisted freehand for pixel labeling, and other enhancements

	Cuboid Scenario Simulation
	Scenario Reader: Read driving scenarios into Simulink to test vehicle controllers and sensor fusion algorithms
	Scenario Generation Example: Generate virtual driving scenarios from recorded vehicle data

	Detection and Tracking
	YOLO v2 Object Detection: Detect objects in a monocular camera using a "you-only-look-once" v2 deep learning object detector
	Tracking Examples: Track vehicles using lidar; evaluate the performance of extended object trackers

	Localization and Mapping
	HERE HD Live Map Reader: Read and visualize data from high-definition maps designed for automated driving applications
	Custom Basemaps: Choose geographic basemaps on which to visualize driving routes in geoplayer

	Planning and Control
	Longitudinal Controller: Control the velocity of autonomous vehicles
	Dynamic Lateral Controller: Control the steering angle of autonomous vehicles considering realistic vehicle dynamics
	Path Smoother: Smooth a planned vehicle path
	Code Generation for Path Planning: Generate C/C++ code for vehicle path planning using MATLAB Coder

	R2018b
	Ground Truth Labeling
	Define multiple custom labels in Ground Truth Labeler connector
	Ground Truth Labeler enhancements

	Cuboid Scenario Simulation
	Bird's-Eye Scope for Simulink: Analyze sensor coverages, detections, and tracks in your model
	Prebuilt Driving Scenarios: Test driving algorithms using Euro NCAP and other prebuilt scenarios
	OpenDRIVE File Import Support: Load OpenDRIVE roads into a driving scenario
	Radar Sensor Model Enhancements: Model occlusions in radar sensors
	Actors follow road elevation and banking angles in Driving Scenario Designer
	Functionality being removed or changed

	Detection and Tracking
	Monocular Camera Parameter Estimation: Configure a monocular camera by estimating its extrinsic parameters
	Monocular camera setup with fisheye lens example
	Sensor fusion and tracking examples

	Planning and Control
	Improved Collision Checking in vehicleCostmap Object: Configure collision checking to plan paths through narrow passages
	Kinematic Lateral Controller: Control the steering angle of an autonomous vehicle
	Obtain transition poses and direction changes from a planned path
	Functionality being removed or changed

	R2018a
	Ground Truth Labeling
	Ground Truth Pixel Labeling: Interactively label individual pixels in video data
	Ground Truth Label Attributes: Organize and classify ground truth labels using attributes and sublabels

	Cuboid Scenario Simulation
	Driving Scenario Designer: Interactively define actors and driving scenarios to test controllers and sensor fusion algorithms
	Add and detect lanes in Driving Scenario
	Path method being removed

	Detection and Tracking
	Lidar Segmentation: Quickly segment 3-D point clouds from lidar
	Point Cloud Reader for Velodyne PCAP Files: Import Velodyne lidar data into MATLAB
	Detect lanes more precisely by using third-degree polynomial lane boundary models
	Transform [x,y,z] locations in vehicle coordinates to image coordinates
	Direction of Yaw Angle Rotation Adjusted

	Localization and Mapping
	Streaming Geographic Map Display: Visualize a geographic route on a map

	Planning and Control
	Path Planning: Plan driving paths using an RRT* path planner and costmap

	Applications
	ACC Reference Application: Use a reference model to simulate and test adaptive cruise controller (ACC) systems

	R2017b
	Ground Truth Labeling
	Ground Truth Labeling App: Reverse playback capability while processing algorithms

	Cuboid Scenario Simulation
	Sensor Simulation Using Simulink Blocks: Generate synthetic object lists from camera and radar sensor models
	Code Generation for Sensor Models: Generate C code for camera and radar sensor models

	Detection and Tracking
	Sensor Fusion Simulink Blocks: Track multiple objects and fuse detections from multiple sensors

	Applications
	Autonomous Driving Examples

	R2017a
	Ground Truth Labeling
	Ground Truth Labeling

	Cuboid Scenario Simulation
	Bird’s-Eye Plot
	Driving Scenario Generation and Sensor Models

	Detection and Tracking
	Monocular Camera Sensor Configuration
	Object and Lane Boundary Detection
	Multi-object Tracking

	Applications
	Automated Driving Examples

